Case 3:06-cv-01905-JSW Document 47 Filed 06/09/2006 Page 1 of 27

Tanner Declaration Exhibit H

Case 3:06-cv-01905-JSW Document 47

a2 United States Patent

Filed 06/09/2006 Page 2 of 27

US006530329B2

(10) Patent No.: US 6,530,329 B2

Katzer (45) Date of Patent: *Mar. 11, 2003
(54) MODEL TRAIN CONTROL SYSTEM 5,475,818 A * 12/1995 Molyneaux et al. 701/20
5,493,642 A 2/1996 Dunsmuir et al.
(75) TInventor: Matthew A. Katzer, 1416 NW. 5,638,522 A 6/1997 Dunsmuir et al.
Benfield Dr., Portland, OR (US) 97229 5,681,015 A * 10/1997 Kull ...ooooiiviveiannnnnnn 246/167 R
5,696,689 A 12/1997 Okumura et al.
: . ; 5,787,371 A * 7/1998 Balukinetal. ... 246/187 A
(73) Assignee:]\{ljiétthew A. Katzer, Hillsboro, OR 5828979 A 10/1998 Ploivka et al.
(Us) 5,896,017 A 4/1999 Severson et al.
. 5,940,005 A 1999 Se t al.
(*) Notice: Subject to any dlsclalmer,' the term of this 5952797 A 251999 Ro:z;::m o
patent is extended or adjusted under 35 6065406 A * S/2000 KAtZercooororveren.. 105/1.4
U.S.C. 154(b) by 0 days. 6,267,061 B1 7/2001 Kalzer
6,270,040 B1 8/2001 Katzer
Thi tent i bject t: t inal dis-
clapeient 18 sibject fo @ ferminat €IS OTHER PUBLICATIONS
Chapell, David, Understanding ActiveX and OLE, 1996,
(21) Appl. No.: 10/124,878 Microsoft Press, Redmond.
(22) Filed: Apr. 17, 2002 * cited by examiner
(65) Prior Publication Data Primary Examiner—William A. Cuchlinski, Jr.
Assistant Examiner—Qlga Hernandez
US 2002/0170458 Al Nov. 21, 2002 (74) Artorney, Agent, or Firm—Chernoff, Vilhauer,
Related U.S. Application Data McClung & Stenzel, LLP
57 ABSTRACT
(63) Continuation of application No. 09/858,222, filed on Apr. S
17, 2002, now Pat. No. 6,460,467. A system which operates a digitally controlled model rail-
(51) TN CL7 oo A63H 19/00 roadtransmitting a first command from a first client program
(52) US.CL 105/1.5; 246/167 R; 246/197; to a resident external controlling interface through a first
"""""""""" ’ ? 246/62’ communications transport. A second command is transmit-
(58) Field of Search 105/1.5, 1.4, 29.2: ted from a second client program to the resident external
246/187A167 R 197' ,62: ,}01 /;26 controlling interface through a second communications
> P T transport. The first command and the second command are
56 Ref. Cited received by the resident external controlling inFerfaoe which
(56) elerences queues the first and second commands. The resident external
U.S. PATENT DOCUMENTS controlling interface sends third and fourth commands rep-
) ;) resentative of the first and second commands, respectively,
g’g;g’ggg ‘: gﬁg;g IS&?E:S et al to a digital command station for execution on the digitally
4:307:302 A 12/1981 Russel)ll ’ controlled model railroad.
4,853,883 A * 8/1989 Nickles et al. 348/121
5,072,900 A 12/1991 Malon 27 Claims, 3 Drawing Sheets
14 12
CLIENT jI, { COMMUNICATIONS 10
PROGRAM TRANSPORT K /
18
r100 110 /114
L
ég:&i“NRDONWS SYNCHRONOUS EXTERNAL
PROCESSOR R SoNTROL
7 o R 1| |Loaic
LOCAL
COMMAND EXTERNAL
Pealfov et QUEUE IDEVICES ‘
102 104 16/ T s
EXTERNAL
asg;«gﬁgsNous g:m‘;:;;sa DEVICE
~|PROCESSOR STORAGE Coae -
Ny LOGIC
106 n2 N 114

Page 3 of 27

Filed 06/09/2006

Case 3:06-cv-01905-JSW Document 47

US 6,530,329 B2

Sheet 1 of 3

Mar. 11, 2003

U.S. Patent

8l
N
SNOILYLS

ONVWWNOO
Tv.Lliold

1HOdSNVYYL)
SNOILVIOINNWINOD \ €

30Vd4H3ILNI
SNITTOHLNOD
TYNH3LX3
IN3Ais3d

Y- 1HOdSNVYHL J
SNOILYOINNNINOD \ <&

oL—"

I ©Old

WvHdS0dd

O O
O o
o) 0]

IN3ITO

o) O
o o
O o

WVYHODO0ld

21—

LN3ITO
vr\\

AN

ol

Page 4 of 27

Filed 06/09/2006

Case 3:06-cv-01905-JSW Document 47

US 6,530,329 B2

Sheet 2 of 3

Mar. 11, 2003

U.S. Patent

8t \w—._.

]
/$321A30
TYNH3L1X3

ol

vil / N:.// oo_.//
2190 ss3oold
Jomhzow dOVHOLS mszoammmll
321A3Q mm<mwu<a — SNONOHHONASY
TYNH3LX3E | (HITTOULINOD
yoL~ zoL~
m—— 3IDYHOLS
Isvav.Lva
ANVWWOD N30T
1001 | |)
2 dHoss3Ioodd N
Jowwan ANVIWWOD) mmwwmmmwm
SNONOHHONAS
TYNH3ILX3 v, SNONOHHONASY
- oL ooL—"
oL
LHOdSNYHL

SNOILVOIINNWNOD

Nw\

INVHD0Hd
IN3ITD

3..\

Page 5 of 27

Filed 06/09/2006

Case 3:06-cv-01905-JSW Document 47

US 6,530,329 B2

Sheet 3 of 3

Mar. 11, 2003

U.S. Patent

€ Old

> ZLL/O0LL

HO0SS3ID0Hd
3IsNods3ay mowmwwmwm
NOILONNZ
NOILVQITVA
m\\\»zm - g0z HO0$SID0Hd
Z H3dN3s _
N ANVWNOD
| aNvIWoS TYNHILX3
c0¢ l\ 002 |\
v:.\\

Okt

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 6 of 27

US 6,530,329 B2

1
MODEL TRAIN CONTROL SYSTEM

This application is a continuation of U.S. patent appli-
cation Ser. No. 09/858,222 filed on Apr. 17, 2002 U.S. Pat.
No. 6,460,467.

BACKGROUND OF THE INVENTION

The present invention relates to a system for controlling
a model railroad.

Model railroads have traditionally been constructed with
of a set of interconnected sections of train track, electric
switches between different sections of the train track, and
other electrically operated devices, such as train engines and
draw bridges. Train engines receive their power to travel on
the train track by electricity provided by a controller through
the track itsell. The speed and direction of the train engine
is controlled by the level and polarity, respectively, of the
electrical power supplied to the train track. The operator
manually pushes buttons or pulls levers to cause the
swilches or other electrically operated devices to function, as
desired. Such model railroad sets are suitable for a single
operator, but unfortunately they lack the capability of
adequately controlling multiple trains independently. In
addition, such model railroad sets are not suitable for being
controlled by multiple operators, especially if the operators
are located at different locations distant from the model
railroad, such as different cities.

A digital command control (DDC) system has been devel-
oped to provide additional controllability of individual train
engines and other electrical devices. Each device the opera-
tor desires to control, such as a train engine, includes an
individually addressable digital decoder. A digital command
station (DCS) is electrically connected to the train track to
provide a command in the form of a set of encoded digital
bits to a particular device that includes a digital decoder. The
digital command station is typically controlled by a personal
computer. A suitable standard for the digital command
control system is the NMRA DCC Standards, issued March
1997, and is incorporated herein by reference. While pro-
viding the ability to individually control different devices of
the railroad set, the DCC system still fails to provide the
capability for multiple operators to control the railroad
devices, especially if the operators are remotely located from
the railroad set and each other.

DigiToys Systems of Lawrenceville, Ga. has developed a
software program for controlling a model railroad set from
a remote location. The software includes an interface which
allows the operator to select desired changes to devices of
the railroad set that include a digital decoder, such as
increasing the speed of a train or switching a switch. The
software issues a command locally or through a network,
such as the internet, to a digital command station at the
railroad set which executes the command. The protoco] used
by the software is based on Cobra from Open Management
Group where the software issues a command to a commu-
nication interface and awaits confirmation that the command
was executed by the digital command station. When the
software receives confirmation that the command executed,
the software program sends the next command through the
communication interface to the digital command station. In
other words, the technique used by the software to control
the model railroad is analogous to an inexpensive printer
where commands are sequentially issued to the printer after
the previous command has been cxecuted. Unfortunaltely, it
has been observed that the response of the model railroad to
the operator appears slow, especially over a distributed

20

45

65

2

network such as the internet. One technique to decrease the
response time is to use high-speed network connections but
unfortunately such connections are expensive.

What is desired, therefore, is a system for controlling a
model railroad that effectively provides a high-speed con-
nection without the additional expense associated therewith.

The foregoing and other objectives, features, and advan-
tages of the invention will be more readily understood upon
consideration of the following detailed description of the
invention, taken in conjunction with the accompanying
drawings.

SUMMARY OF THE PRESENT INVENTION

The present invention overcomes the aforementioned
drawbacks of the prior art, in a first aspect, by providing a
system for operating a digitally controlled model railroad,
that includes transmitting a first command from a first client
program to a resident external controlling interface through
a first communications transport. A second command is
transmitted from a second client program to the resident
external controlling interface through a second communica-
tions transport. The first command and the second command
are received by the resident external controlling interface
which queues the first and second commands. The resident
external controlling interface sends third and fourth com-
mands representative of the first and second commands,
respectively, to a digital command station for execution on
the digitally controller model railroad.

Incorporating a communications transport between the
multiple client program and the resident external controlling
interface permits multiple operators of the model railroad at
locations distant from the physical model railroad and each
other. In the environment of a mode] railroad club where the
members want to simultaneously control devices of the same
model railroad layout, which preferably includes multiple
trains operating thereon, the operators each provide com-
mands to the resistant external controlling interface, and
hence the model railroad In addition by quening by com-
mands at a single resident external controlling interface
permits controlled execution of the commands by the digi-
tally controlled model railroad, would may otherwise con-
flict with one another.

In another aspect of the present invention the first com-
mand is selectively processed and sent to one of a plurality
of digital command stations for execution on the digitally
controlled model railroad based upon information contained
therein. Preferably, the second command is also selectively
processed and sent to one of the plurality of digital command
stations for execution on the digitally controlled model
railroad based upon information contained therein. The
resident external controlling interface also preferably
includes a command queue to maintain the order of the
commands.

The command queue also allows the sharing of multiple
devices, multiple clients to communicate with the same
device (locally or rcmote) in a controlled manner, and
multiple clients to communicate with different devices. In
other words, the command queue permits the proper execu-
tion in the cases of: (1) one client to many devices, (2) many
clients to one device, and (3) many clients to many devices.

In yet another aspect of the present invention the first
command is transmitted from a first client program to a first
processor through a first communications transport. The first
command is received at the first processor. The first proces-
sor provides an acknowledgement to the first client program
through the first communications transport indicating that

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 7 of 27

US 6,530,329 B2

3

the first command has properly executed prior to execution
of commands related to the first command by the digitally
controlled model railroad. The communications transport is
preferably a COM or DCOM interface.

The model railroad application involves the use of
extremely slow real-time interfaces between the digital
command stations and the devices of the model railroad. In
order to increase the apparent speed of execution to the
client, other than using high-speed communication
interfaces, the resident external controller interface receives
the command and provides an acknowledgement to the
client program in a timely manner before the execution of
the command by the digital command stations. Accordingly,
the execution of commands provided by the resident exter-
nal controlling interface to the digital command stations
occur in a synchronous manner, such as a first-in-first-out
manner. The COM and DCOM communications transport
between the client program and the resident external con-
trolling interface is operated in an asynchronous manner,
namely providing an acknowledgement thereby releasing
the communications transport to accept further communica-
tions prior to the actual execution of the command. The
combination of the synchronous and the asynchronous data
communication for the commands provides the benefit that
the operator considers the commands to occur nearly instan-
taneously while permitting the resident external controlling
interface to verify that the command is proper and cause the
commands to execule in a controlled manner by the digital
command stations, all without additional high-speed com-
munication networks. Moreover, for traditional distributed
software execution there is no motivation to provide an
acknowledgment prior to the execution of the command
because the command executes quickly and most commands
are sequential in nature. In other words, the execution of the
next command is dependent upon proper execution of the
prior command so there would be no motivation to provide
an acknowledgment prior to its actual execution.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary embodiment of
a model train control system.

FIG. 2 is a more detailed block diagram of the model train
control system of FIG. 1 including external device control
logic.

FIG. 3 is a block diagram of the external device control
logic of FIG. 2.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring to FIG. 1, a model train control system 10
includes a communications transport 12 interconnecting a
client program 14 and a resident external controlling inter-
face 16. The client program 14 executes on the model
railroad operator’s computer and may include any suitable
system to permit the operator to provide desired commands
to the resident external controlling interface 16. For
example, the client program 14 may include a graphical
interface representative of the model railroad layout where
the operator issues commands to the model railroad by
making changes to the graphical interface. The client pro-
gram 14 also defines a set of Application Programming
Interfaces (API’s), described in detail later, which the opera-
tor accesses using the graphical interface or other programs
such as Visual Basic, C++, Java, or browser based applica-
tions. There may be multiple client programs interconnected

40

50

4

with the resident external controlling interface 16 so thal
multiple remote operators may simultancously provide con-
trol commands to the model railroad.

The communications transport 12 provides an interface
between the client program 14 and the resident external
controlling interface 16. The communications transport 12
may be any suitable communications medium for the trans-
mission of data, such as the internet, local area network,
satellite links, or multiple processes operating on a single
computer. The preferred interface to the communications
transport 12 is a COM or DCOM interface, as developed for
the Windows operating system available from Microsoft
Corporation. The communications transport 12 also deter-
mines if the resident external controlling interface 16 is
system resident or remotely located on an external system.
The communications transport 12 may also use private or
public communications protocol as a medium for commu-
nications. The client program 14 provides commands and
the resident external controlling interface 16 responds to the
communications transport 12 to exchange information. A
description of COM (common object model) and DCOM
(distributed common object model) is provided by Chappel
in a book entitled Understanding ActiveX and OLE,
Microsoft Press, and is incorporated by reference herein.

Incorporating a communications transport 12 between the
client program(s) 14 and the resident external controlling
interface 16 permits multiple operators of the model railroad
at locations distant from the physical model railroad and
each other. In the environment of a model railroad club
where the members want to simultaneously control devices
of the same model railroad layout, which preferably includes
multiple trains operating thereon, the operators each provide
commands to the resistant external controlling interface, and
hence the model railroad.

The manner in which commands are executed for the
model railroad under COM and DCOM may be as follows.
The client program 14 makes requests in a synchronous
manner using COM/DCOM to the resident external interface
controller 16. The synchronous manner of the request is the
technique used by COM and DCOM to execute commands.
The communications transport 12 packages the command
for the transport mechanism to the resident external con-
trolling interface 16. The resident external controlling inter-
face 16 then passes the command to the digital command
stations 18 which in turn executes the command. After the
digital command station 18 executes the command an
acknowledgement is passed back to the resident external
controlling interface 16 which in turn passes an acknowl-
edgement to the client program 14. Upon receipt of the
acknowledgement by the client program 14, the communi-
cations transport 12 is again available to accept another
command. The train control system 10, without more, per-
mits execution of commands by the digital command sta-
tions 18 from multiple operators, but like the DigiToys
Systems’ software the execution of commands is slow.

The present inventor came to the realization that unlike
traditional distributed systems where the commands passed
through a communications transport are executed nearly
instantaneously by the server and then an acknowledgement
is returned to the client, the model railroad application
involves the use of extremely slow real-time interfaces
between the digital command stations and the devices of the
model railroad. The present inventor came to the further
realization that in order to increase the apparent speed of
execution 1o the client, other than using high-speed com-
munication interfaces, the resident external controller inter-
face 16 should receive the command and provide an

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 8 of 27

US 6,530,329 B2

5

acknowledgement to the client program 12 in a timely
manner before the execution of the command by the digital
command stations 18. Accordingly, the execution of com-
mands provided by the resident external controlling inter-
face 16 to the digital command stations 18 occur in a
synchronous manner, such as a first-in-first-out manner. The
COM and DCOM communications transport 12 between the
client program 14 and the resident external controlling
interface 16 is operated in an asynchronous manner, namely
providing an acknowledgement thereby releasing the com-
munications transport 12 to accept further communications
prior to the actual execution of the command. The combi-
nation of the synchronous and the asynchronous data com-
munication for the commands provides the benefit that the
operator considers the commands to occur nearly instanta-
neously while permitting the resident external controlling
interface 16 to verify that the command is proper and cause
the commands to execute in a controlled manner by the
digital command stations 18, all without additional high-
speed communication networks. Moreover, for traditional
distributed software execution there is no motivation to
provide an acknowledgment prior to the execution of the
command because the command executes quickly and most
commands are sequential in nature. In other words, the
execution of the next command is dependent upon proper
execution of the prior command so there would be no
motivation to provide an acknowledgment prior to its actual
execution. It is to be understood that other devices, such as
digital devices, may be controlled in a manner as described
for model railroads.

Referring to FIG. 2, the client program 14 sends a
command over the communications transport 12 that is
received by an asynchronous command processor 100. The
asynchronous command processor 100 queries a local data-
base storage 102 to determine if it is necessary to package
a command to be transmitted to a command queue 104. The
local database storage 102 primarily contains the state of the
devices of the model railroad, such as for example, the speed
of a train, the direction of a train, whether a draw bridge is
up or down, whether a light is turned on or off, and the
configuration of the model railroad layout. If the command
received by the asynchronous command processor 100 is a
query of the state of a device, then the asynchronous
command processor 100 retrieves such information from the
local database storage 102 and provides the information to
an asynchronous response processor 106. The asynchronous
response processor 106 then provides a response to the client
program 14 indicating the state of the device and releases the
communications transport 12 for the next command.

The asynchronous command processor 100 also verifies,
using the configuration information in the local database
storage 102, that the command received is a potentially valid
operation. If the command is invalid, the asynchronous
command processor 100 provides such information to the
asynchronous response processor 106, which in turn returns
an error indication to the client program 14.

The asynchronous command processor 100 may deter-
mine that the necessary information is not contained in the
local database storage 102 to provide a response to the client
program 14 of the device state or that the command is a valid
action. Actions may include, for example, an increase in the
train’s speed, or turning on/off of a device. In either case, the
valid unknown state or action command is packaged and
forwarded to the command queue 104. The packaging of the
command may also include additional information from the
local database storage 102 to complete the client program 14
request, if necessary. Together with packaging the command

20

25

30

40

45

60

6

for the command queue 104, the asynchronous command
processor 100 provides a command to the asynchronous
request processor 106 to provide a response to the client
program 14 indicating that the event has occurred, even
though such an event has yet to occur on the physical
railroad layout.

As such, it can be observed that whether or not the
command is valid, whether or not the information requested
by the command is available to the asynchronous command
processor 100, and whether or not the command has
executed, the combination of the asynchronous command
processor 100 and the asynchronous response processor 106
both verifies the validity of the command and provides a
response 1o the client program 14 thereby freeing up the
communications transport 12 for additional commands.
Without the asynchronous nature of the resident external
controlling interfacc 16, the response to the client program
14 would be, in many circumstances, delayed thereby result-
ing in frustration to the operator that the model railroad is
performing in a slow and painstaking manner. In this
manner, the railroad operation using the asynchronous inter-
face appears to the operator as nearly instantaneously
responsive.

Each command in the command queue 104 is fetched by
a synchronous command processor 110 and processed. The
synchronous command processor 110 queries a controller
database storage 112 for additional information, as
necessary, and determines if the command has already been
executed based on the state of the devices in the controller
database storage 112. In the event that the command has
already been executed, as indicated by the controller data-
base storage 112, then the synchronous command processor
110 passes information to the command queue 104 that the
command has been executed or the state of the device. The
asynchronous response processor 106 fetches the informa-
tion from the command cue 104 and provides a suitable
response to the client program 14, if necessary, and updates
the local database storage 102 to reflect the updated status of
the railroad layout devices.

If the command fetched by the synchronous command
processor 110 from the command queue 104 requires execu-
tion by external devices, such as the train engine, then the
command is posted to one of several external device control
logic 114 blocks. The external device control logic 114
processes the command from the synchronous command
processor 110 and issues appropriate control commands to
the interface of the particular external device 116 to execute
the command on the device and ensure that an appropriate
response was received in response. The external device is
preferably a digital command control device that transmits
digital commands to decoders using the train track. There
are several different manufacturers of digital command
stations, each of which has a different set of input
commands, so each external device is designed for a par-
ticular digital command station. In this manner, the system
is compatible with different digital command stations. The
digital command stations 18 of the external devices 116
provide a response to the external device control logic 114
which is checked for validity and identified as to which prior
command it corresponds to so that the controller database
storage 112 may be updated properly. The process of trans-
mitting commands to and receiving responses from the
external devices 116 is slow.

The synchronous command processor 110 is notified of
the results from the external control logic 114 and, if
appropriate, forwards the results to the command queue 104.
The asynchronous response processor 100 clears the results

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 9 of 27

US 6,530,329 B2

7

from the command queue 104 and updates the local database
storage 102 and sends an asynchronous response to the
clienl program 14, if needed. The response updates the client
program 14 of the actual state of the railroad track devices,
if changed, and provides an error message to the client
program 14 if the devices actual state was previously
improperly reported or a command did not execute properly.

The use of two separate database storages, each of which
is subslantially a mirror image of the other, provides a
performance enhancement by a fast acknowledgement to the
client program 14 using the local database storage 102 and
thereby frecing up the communications transport 12 for
additional commands. In addition, the number of commands
forwarded to the external device control logic 114 and the
external devices 116, which are relatively slow to respond,
is minimized by maintaining information concerning the
state and configuration of the model railroad. Also, the use
of two separate database tables 102 and 112 allows more
efficient multi-threading on multi-processor computers.

In order to achieve the separation of the asynchronous and
synchronous portions of the system the command queue 104
is implemented as a named pipe, as developed by Microsoft
for Windows. The queue 104 allows both portions to be
separate from each other, where each considers the other to
be the destination device. In addition, the command queue
maintains the order of operation which is important to
proper operation of the system.

The use of a single command queue 104 allows multiple
instantrations of the asynchronous functionality, with one
for each different client. The single command queue 104
also allows the sharing of multiple devices, multiple clients
to communicate with the same device (locally or remote) in
a controlled manner, and multiple clients to communicate
with different devices. In other words, the command-queue
104 permits the proper execution in the cases of: (1) one
client to many devices, (2) many clients to one device, and
(3) many clients to many devices.

The present inventor came to the realization that the
digital command stations provided by the different vendors
have at least three different techniques for communicating
with the digital decoders of the model railroad set. The first
technique, generally referred to as a transaction (one or more
operations), is a synchronous communication where a com-
mand is transmitted, executed, and a response is received
therefrom prior to the transmission of the next sequentially
received command. The DCS may execute multiple com-
mands in this transaction. The second technique is a cache
with out of order execution where a command is executed
and a response received therefrom prior to the execution of
the next command, but the order of execution is not neces-
sarily the same as the order that the commands were
provided to the command station. The third technique is a
local-area-network model where the commands are trans-
mitted and received simultaneously. In the LAN model there
is no requirement to wait until a response is received for a
particular command prior to sending the next command.
Accordingly, the LAN model may result in many commands
being transmitted by the command station that have yet to be
executed. In addition, some digital command stations use
two or more of these techniques.

With all these different techniques used to communicate
with the model railroad set and the system 10 providing an
interface for each different type of command station, there
exists a need for the capability of matching up the responses
from each of the different types of command stations with
the particular command issued for record keeping purposes.

25

45

65

8

Without maltching up the responses from the command
stations, the databases can not be updated properly.

Validation functionality is included within the external
device control logic 114 to accommodate all of the different
types of command stations. Referring to FIG. 3, an external
command processor 200 receives the validated command
from the synchronous command processor 110. The external
command processor 200 determines which device the com-
mand should be directed to, the particular type of command
it is, and builds state information for the command. The state
information includes, for example, the address, type, port,
variables, and type of commands to be sent out. In other
words, the state information includes a command set for a
particular device on a particular port device. In addition, a
copy of the original command is maintained for verification
purposes. The constructed command is forwarded to the
command sender 202 which is another queue, and preferably
a circular queue. The command sender 202 receives the
command and transmits commands within its queue in a
repetitive nature until the command is removed from its
queue. A command response processor 204 receives all the
commands from the command stations and passes the com-
mands to the validation function 206. The validation func-
tion 206 compares the received command against potential
commands that are in the queue of the command sender 202
that could potentially provide such a result. The validation
function 206 determines one of four potential results from
the comparison. First, the results could be simply bad data
that is discarded. Second, the results could be partially
executed commands which are likewise normally discarded.
Third, the results could be valid responses but not relevant
to any command sent. Such a case could result from the
operator manually changing the state of devices on the
model railroad or from another external device, assuming a
shared interface to the DCS. Accordingly, the results are
validated and passed to the result processor 210. Fourth, the
results could be valid responses relevant to a command sent.
The corresponding command is removed from the command
sender 202 and the results passed to the result processor 210.
The commands in the queue of the command sender 202, as
a result of the validation process 206, are retransmitted a
predetermined number of times, then if error still occurs the
digital command station is reset, which if the error still
persists then the command is removed and the operator is
notified of the error.

APPLICATION PROGRAMMING INTERFACE

Train ToolsTM Interface Description
Building your own visual interface to a model railroad
Copyright 1992-1998 KAM Industries.
Computer Dispatcher, Engine Commander, The Conductor,
Train Server, and Train Tools are Trademarks of KAM
Industries, all Rights Reserved.
Questions concerning the product can be EMAILED to:
traintools@kam.rain.com
You can also mail questions to:
KAM Industries
2373 NW 185th Avenue Suite 416
Hillsboro, Oregon 97124
FAX - (503) 291-1221
Table of contents
1. OVERVIEW
1.1 System Architecture
2. TUTORIAL
2.1 Visual BASIC Throttle Example Application
2.2 Visual BASIC Throttle Example Source Code
3, IDL COMMAND REFERENCE

Case 3:06-cv-01905-JSW Document 47

9

-continued

Filed 06/09/2006

US 6,530,329 B2

10

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

3.1
3.2
3.3

3.4

35

3.6

37

38

Introduction

Data Types

Commands o access the server configuration variable

database
KamCVGetValue
KamCVPutValue
KamCVGetEnable
KamCVPutEnable
KamCVGetName
KamCVGetMinRegister
KamCVGetMaxRegister

Commands to program configuration variables
KamProgram
KamProgramGetMode
KamProgramGelStatus
KamProgramReadCV
KamProgramCV
KamProgramReadDecoderToDataBase
KamProgramDecoderFromDataBase

Commands lo control all decoder Lypes
KamDecoderGetMaxModels
KamDecoderGetModeIName
KamDecoderSetModel ToObj
KamDecoderGetMaxAddress
KamDecoderChangeOldNewAddr
KamDecoderMovePort
KamDecoderGetPort
KamDecoderCheckAddrInUse
KamDecoderGetModelFromObj
KamDecoderGetModelFacility
KamDecoderGetObjCount
KamDecoderGetObjAtIndex
KamDecoderPutAdd
KamDecoderPutDel
KamDecoderGetMfgName
KambDecoderGetPowerMode
KamDecoderGetMaxSpeed

Commands to control locomotive decoders
KamEngGetSpeed
KamEngPutSpeed
KamEngGetSpeedSteps
KamEngPutSpeedSteps
KamEngGetFunction
KamEngPutFunction
KamEngGetFunctionMax
KamEngGetName
KamEngPutName
KamEngGetFunctionName
KamEngPutFunctionName
KamEngGetConsistMax
KamEngPutConsistParent
KamEngPutConsistChild
KamEngPutConsistRemoveObj

Commands to control accessory decoders
KamAccGetFunction
KamAccGetFunctionAll
KamAccPutFunction
KamAccPutFunctionAll
KamAccGetFunctionMax
KamAccGetName
KamAccPutName
KamAccGetFunctionName
KamAccPutFunctionName
KamAccRegFeedback
KamAccRegFeedbackAll
KamAccDelFeedback
KamAccDelFeedbackAll

Commands to control the command station
KamOprPutTurnOnStation
KamOprPutStartStation
KamOprPutClearStation
KamOprPutStopStation
KamOprPutPowerOn
KamOprPutPowerOff
KamOprPutHardReset
KamOprPutEmergencyStop
KamOprGetStationStatus

20

25

30

35

40

45

50

55

60

65 -

39 Commands to configure the command station
communication port
KamPortPutConfig
KamPortGetConfig
KamPortGetName
KamPortPutMapController
KamPortGetMaxLogPorts
KamPortGetMaxPhysical
3.10 Commands that control command flow to the command
station
KamCmdConnect
KamCmdDisConnect
KamCmdCommand
311 Cab Control Commands
KamCabGetMessage
KamCabPutMessage
KamCabGetCabAddr
KamCabPutAddrToCab
3,12 Miscellancous Commands
KamMiscGelErrorMsg
KamMiscGetClockTime
KamMiscPutClockTime
KamMiscGetInterface Version
KamMiscSaveData
KamMiscGetControllerName
KamMiscGetControllerNameAtPort
KamMiscGetCommandStation Value
KamMiscSetCommandStationValue
KamMiscGetCommandStationIndex
KamMiscMaxControllerID
KamMiscGetControllerFacility
L OVERVIEW
This document is divided into two sections, the
Tutorial, and the IDL Command Reference. The tutorial
shows the complete code for a simple Visual BASIC program
that controls all the major functions of a locomotive.
This program makes use of many of the commands described
in the reference section. The IDL Command Reference
describes each command in detail.
L TUTORIAL
A. Visual BASIC Throttle Example Application
The following application is created using the
Visual BASIC source code in the next section. It
controls all major locomotive functions such as speed,
direction, and auxiliary functions.
A, Visual BASIC Throttle Example Source Code
* Copyright 1998, KAM Industries. All rights reserved.

This is 2 demonstration program showing the
integration of VisualBasic and Train Server{tm)
interface. You may use this application for non
commercial usage.

)
'
f

‘$Daic: $
‘$Author: $
"$Revision: $
'$log: §
' Engine Commander, Computer Dispatcher, Train Server,
Train Tools, The Conductor and kamind are registered
Trademarks of KAM Industries. All rights reserved.

! This first command adds the reference to the Train
! ServerT Interface object Dim EngCmd As New EngComlfc

Engine Commander uses the term Ports, Devices and
Ceontrollers
' Ports -> These are logical ids where Decoders are
assigned to. Train ServerT Interface supports a
limited number of logical ports. You can also think
of ports as mapping to a command station type. This
allows you to move decoders between command station
without losing any information about the decoder

Devices -> These are communications channels
configured in your computer.

You may have a single device (com1) or multiple
devices

Page 10 of 27

Case 3:06-cv-01905-JSW Document 47 Filed 06/09/2006 Page 11 of 27

US 6,530,329 B2

1

-continued

12

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

! (COM 1 - COMS, LPT1, Other). You are required to 5 'LENZ 1x 2 /f Lenz serial support module
' map a port to a device to access a command station. ' LENZ_2x 3 // Lenz serial support module
' Devices start from ID 0 -> max id (FYT; devices do ' DIGIT__DT200 4 /f Digitrax direct drive
' not necessarily have to be serial channel. Always support using DT200
‘ check the name of the device before you use it as ' DIGIT__DCS100 5 /f Digitrax direct drive
' well as the maximum number of devices supported. support using DCS100
! The Command 10 ' MASTERSERIES 6 // North Coast engineering
' EngCmd.KamPortGetMaxPhysical (IMaxPhysical, 1Serial, master Series
! |Paratlel) provides means that... IMaxPhysical = ' SYSTEMONE 7 // System One
' ISerial + IParallel + l1Other ' RAMFIX 8 // RAMFIxx system
' ' DYNATROL 9 // Dynatrol system
' Controller - These are command the command station ' Northcoast binary 10 // North Coast binary
' like LENZ, Digitrax 15 ' SERIAL 11 // NMRA Serial
! Northcoast, EasyDCC, Marklin... 1t is recommend interface
! that you check the command station ID before you ' EASYDCC 12 // NMRA Serial interface
use it. ' MRK6050 13 /f 6050 Marklin interface
' (AC and DC)
! Errors - All commands return an error status. If ' MRK6023 14 // 6023 Marklin hybrid
' the error value is non zero, then the 20 interface (AC)
! other return arguments are invalid. In ‘ZTC 15 /{ ZTC Syslems 1td
' general, non zero errors means command was ' DIGIT_PR1 16 // Digitrax direct drive
! not executed. To get the error message, support using PR1
' you need to call KamMiscErrorMessage and ' DIRECT 17 // Direct drive interface
supply the error number routine
) O
! To Operate your layout you will need to perform a 25 iLogicalPort = 1 'Select Logical port 1 for
! mapping between a Port (logical reference), Device communications
' (physical communications channel) and a Controller iController = 1 'Select controller from the list
' (command station) for the program to work. All above.
' references uses the logical device as the reference iComPort = 0 ' use COM1; 0 means com1 (Digitrax must
' device for access. use Com1 or Com2)
! 30 ‘Digitrax Baud rate requires 16.4K!
! Addresses used are an object reference. To use an "Most COM ports above Com2 do not
' address you must add the address to the command ‘support 16.4K. Check with the
' station using KamDecoderPutAdd ... One of the return ‘manufacture of your smart com card
values from this operation is an object reference ‘for the baud rate. Keep in mind that
that is used for control. '‘Dumb com cards with serial port
' 35 ‘support Com1 - Com4 can only support
' We need certain variables as global objects; since *2 com ports (like com1/com2
! the information is being used multiple times ‘or com3/com4)
Dim iLogicalPort, iController, iComPort If you change the controller, do not
Dim iPortRate, iPortParity, iPortStop, iPortRetrans, ‘forget to change the baud rate to
iPortWatchdog, iPortFlow, iPortData ‘match the command station. See your
Dim |EngineObject As Long, iDecoderClass As Integer, 40 ‘user manual for details
iDeCOdchype AsInlegel' TR FE AR AR R R R RS R R F AR SR R RS RS AR KRR F R F R R R E R EE R R TR RN KRR W
Dim IMaxController As Long ' 0: // Baud rate is 300
Dim IMaxLogical As Long, IMaxPhysical As Long, IMaxSerial ' 1: /f Baud rate is 1200
As Long, IMaxParallel As Long ' 2: /{ Baud rate is 2400
AR AR KRR AR AR * 3. // Baud rale is 4800
'Form load function * 4: // Baud rate is 9600
- Turn of the initial buttons 45 ’5: // Baud rate is 14.4
- Set he interface information ' 6: /f Baud rate is 16.4
R R R *7: J/ Baud sate is 19.2
Private Sub Form__load() iPortRate = 4
Dim strVer As String, strCom As String, strCntil As * Parity values 0-4 -> no, odd, even, mark,
String space
Dim iError As Integer 50 iPortParity = 0
‘Get the interface version information ' Stop bits 0,1,2 -> 1, 1.5, 2
SetButtonState (False) iPortStop = 0
iError = EngCmd.KamMiscGetinterface Version(strVer) iPortRetrans = 10
If (iError) Then iPortWatchdog = 2048
MsgBox ((“Train Server not loaded. Check iPortFlow = 0
DCOM-95)) 55 ' Data bits 0 - > 7 Bits, 1-> 8 bits
iLogicalPort = 0 iPortData = 1
LogPort.Caption = iLogicalPort ‘Display the port and controller information
ComPort.Caption = “?777” iError = EngCmd.KamPortGetMaxLogPorts(IMaxLogical)
Controller.Caption = “Unknown” iError = EngCmd.KamPortGetMaxPhysical(IMaxPhysical,
Else IMaxSerial, IMaxParallel)
MsgBox ((“Simulation(COM1) Train Server -- ” & 60 ' Get the port name and do some checking...
strver)) iError = EngCmd.KamPortGetName(iComPort, strCom)
B T T T TR T T T SetError (iError)
‘Configuration information; Only need to If (iComPort > IMaxSerial) Then MsgBox (“Com port
change these values to use a different our of range”)
controller... iError =
Babaloluiohuisioh e kit EngCmd.KamMiscGetControllerName(iController,
' UNKNOWN 0 // Unknown control type 65 strCntrl)
' SIMULAT 1 // Interface simulator If (iLogicalPort > IMaxLogical) Then MsgBox

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

13

-continued

14

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

(“Logical port out of range™)

SetError (iError)

End If

‘Display values in Throttle..
LogPort.Caption = iLogicalPort
ComPort.Caption = strCom
Controller.Caption = strCntrl

End Sub

TEERE R AR KK MKRKE T TR A

‘Send Command

'Note:

v

Please follow the command order. Order is important
for the application to work!

T L R T

Private

Sub Command_ Click()
‘Send the command from the interface to the command
station, use the engineObject
Dim iError, iSpeed As Integer
If Not Connect.Enabled Then
‘TrainTools interface is a caching interface.
‘This means that you need to set up the CV’s or
‘other operations first; then execute the
‘command.
iSpeed = Speed. Text
iErmror =
EngCmd.KamEngPutFunction(lEngineObject, 0, FO.Value)
iError =
EngCmd.KamEngPutFunction(IEngineObject, 1,
F1.Value)
iError =
EngCmd. KamEngPutFunction(IEngineObject, 2,
F2.Value)
iError =
EngCmd.KamEngPutFunction(IEngineObject, 3,
F3.Value)
iError = EngCmd.KamEngPutSpeed(IEngineObject,
iSpeed, Direction. Value)
If iError = Q Then iError =
EngCmd.KamCmdCommand(IEngineObject)
SetError (iError)
End If

End Sub

L L L

‘Connect Controller
AR R R R RK KW AR

Private

for use

Sub Connect__Click()
Dim iError As Integer
“Ihese are the index values for setting up the port

' PORT_RETRANS 0 // Retrans index

‘ PORT_RATE 1 // Retrans index
* PORT_PARITY 2 // Retrans index
' PORT_STOP 3 // Retrans index
' PORT_WATCHDOG 4 // Relrans index
' PORT_FLOW 5 // Retrans index
' PORT__DATABITS 6 // Retrans index
‘ PORT_DEBUG 7 // Retrans index
' PORT_PARALLEL 8 // Retrans index

These are the index values for setting up the

port for use
* PORT_RETRANS 0 // Retrans index
' PORT_RATE 1 // Retrans index
' PORT_PARITY 2 // Retrans index
' PORT_STOP 3 // Retrans index
' PORT_WATCHDOG 4 // Retrans index
' PORT__FLOW 5 // Retrans index
' PORT_DATABITS 6 // Retrans index
* PORT_DEBUG 7 // Retrans index

' PORT_PARALLEL 8 // Retrans index

iEsrror = EngCmd.KamPortPutConfig(iLogicalPort, 0,
iPortRetrans, 0) ' setting PORT__RETRANS

iError = EngCmd.KamPortPutConfig(iLogicalPort, 1
iPortRate, 0) ' setting PORT_RATE

iError = EnqCmd.KamPortPutConfig(iLogicalPort, 2,
iPortParity, 0) ' setting PORT_PARITY

iError = EngCmd. KamPortPutConfig(ilogicalPort, 3
iPortStop, 0) ' seiting PORT_STOP

10

s
wn

25

30

35

40

45

S0

55

60

65

iError = EngCmd.KamPortPutConfig(ilogicatPort, 4
iPortWatchdog, 0) ' setting PORT_ WATCHDOG
iError » EngCmd.KamPortPutConfig(iLogicalPort, 5,
iPortFlow, 0) ' setting PORT__FLOW
iError = EngCmd. KamPortPutConfig(iLogicalPort, 6,
iPortData, 0) ' setting PORT_DATABITS
' We need to set the appropriate debug mode for display..
* this command can only be sent if the following is true
* -Controlier is not connected
* -port has not been mapped
* -Not share ware version of application (Shareware
' always set to 130)

' Write Display Log Debug

'File Win Level Value

‘142+4=7 -> LEVEL1 -- put packets into
queues

'1+42+8=1 -> LEVEL?2 -- Status messages

! send to window

‘1+2+16=19 -> LEVEL3 --

"1+2+32=35 -> LEVEL4 -- All system

! semaphores/critical sections

142+ 64=067 -> LEVELS -- detailed

debugging information
'1+2+128=0131 -> COMMONLY -- Read comm write
' comm ports
"You probably only want to use values of 130, This will
'give you a display what is read or written to the
‘controller. If you want to write the information to
‘disk, use 131. The other information is not valid for
‘end users.
' Note: 1. This does effect the performance of you
' system; 130 is a save value for debug
' display. Always set the key to 1, a value
! of 0 will disable debug
! 2. The Digitrax control codes displayed are
! encrypted. The information that you
' determine from the control codes is that
' information is sent (S) and a response is
' received (R)
iDebugMode = 130
iValue = Value.Text' Display value for reference
iError = EngCmd. KamPortPutConfig(iLogicalPort, 7, iDebug,
iValue)' setting PORT_DEBUG
‘Now map the Logical Port, Physical device, Command
station and Controller
iError = EngCmd.KamPortPutMapController(iLogicalPort,
iController, iComPort)
iError = EngCmd.KamCmdCoanect(iLogicalPort)
iError = EngCmd. KamOprPutTurnOnStation(iLogicalPort)
If (iError) Then
SetButtonState (False)
Else
SetButtonState (True)
End If
SetError (iError) 'Displays the error message and error
number
End Sub
T LT LT LT T T TP
‘Set the address button
R AR AR KRR R AR AR
Private Sub DCCAddr_ Click()
Dim iAddr, iStatus As Integer
* All addresses must be match to a logical port to
operale
iDecoderType = 1 ' Sel the decoder type to an NMRA
baseline decoder (1 - 8 reg)
iDecoderClass = 1 ' Set the decoder class to Engine
decoder (there are only two classes of decoders;
Engine and Accessory
‘Once we make a connection, we use the IEngineObject
‘as the reference object to send control information
If (Address.Text > 1) Then
iStatus = EngCmd.KamDecoderPutAdd(Address.Text,
iLogicalPort, iLogicalPort, 0,
iDecoderType, IEngineObject)

Page 12 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

15

-continued

16

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

SetError (iStatus)

If(1EngineObject) Then
Command.Enabled = True 'turn on the control
(send) button
Throttle.Enabled = True "Turn on the throttle

Else

MsgBox (“Address not set, check error message™)
End If

Else
MsgBox (“Address must be greater then O and

less then 128”)
End If
End Sub

EEL LT PP PP

‘Disconenct button
R R R R R AT AR
Private Sub Disconnect_Click()
Dim iError As I[nteger
iError = EngCmd.KamCmdDisConnect(iLogicalPort)
SetError (iError)
SetButtonState (False)
End Sub

B R RO

‘Display error message
-
Private Sub SetError(iError As Integer)
Dim szError As String
Dim iStatus
' This shows how to retrieve a sample error message
from the interface for the status received.
iStatus = EngCmd.KamMiscGetErrorMsg(iError, szError)
ErrorMsg.Caption = szError
Result.Caption = Str(iStatus)
End Sub

1 R 0 R

'Set the Form button state
T
Private Sub SetButtonState(iState As Boolesn)
‘We set the state of the buttons; either connected
or disconnected
If (iState) Then
Connect.Enabled = False
Disconnect.Enabled = True
ONCmd.Enabled = True
OffCmd.Enabled = True
DCCAddr.Enabled = True
UpDownAddress.Enabled = True
‘Now we check to sce if the Engine Address has been
‘set; if il has we enable the send button
If (IEngineObject > 0) Then
Command.Enabled = True
Throttle.Enabled = True
Else
Command.Enabled = False
Throttle.Enabled = False
End If
Else
Connect.Enabled = True
Disconnect.Enabled = False
Command.Enabled = False
ONCmd.Enabled = False
OffCmd.Enabled = False
DCCAddr.Enabled = False
UpDownAddress.Enabled = Faise
Throttle.Enabled = False
End If
End Sub

B P P PP

‘Power Off function

AR

Private Sub OffCmd__Click()
Dim iError As Integer
iErros = EngCmd.KamOprPutPowerOff(iLogicalPort)
SetError (iError)

End Sub

ET T T T T T

‘Power On function

15

20

25

30

40

45

50

55

60

65

B TR T

Private Sub ONCmd__Click()
Dim iError As Integer
iError = EngCmd. KamOprPutPowerOn(ilogicalPort)
SetError (iError)

End Sub

T T T T TP

‘Throttle slider control
AR RR AR AE
Private Sub Throttle__Click()
If (IEngineObject) Then
If (Throttle.Value > 0) Then
Speed.Text = Throttle. Value
End If
End If
End Sub
L IDL COMMAND REFERENCE
A. Introduction
This document describes the [DL interface to
the KAM Industries Engine Commander Train Server. The
Train Server DCOM server may reside locally or on a
network node This server handles all the background
details of controlling your railroad. You write simple,
front end programs in a variety of languages such as
BASIC, Java, or C++ to provide the visual interface to
the user while the server handles the details of
communicating with the command station, etc.
A. Data Types
Data is passed to and from the IDL interface using a
several primitive data types. Arrays of these simple
types are also used. The exact type passed to and from
your program depends on the programming language your are
using.
The following primitive data types are used:
IDL Type BASIC Type C++ Type Java Type Description

short short short short Short signed integer
int int int int Signed integer

BSTR BSTR BSTR BSTR Text string

long long long long Unsigned 32 bit value

Name ID CV Range Valid CV’s Functions Address Range Speed
Steps

NMRA Compatible 0 Nome None 2 1-99 14
Baseline 1 1-8 1-8 9 1-127 14
Extended 2 1-106 1-9,17, 18, 19, 23, 24, 29, 30,

49, 66-95 9 1-10239 14,28,128

All Mobile 3 1-106 1-106 9 1-10239 14,28,128
Name ID CV Range Valid CV’s Functions Address Range
Accessory 4 513-593 513-593 8 0-511

All Stationary 5§ 513-1024 513-1024 8 0-511

A long /DecoderObject/D value is returned by the
KamDecoderPutAdd call if the decoder is successfully
registered with the server. This unique opaque ID should

be used for all subseq calls to ref this

decoder.

A. Commands to access the server configuration variable
database

This section describes the commands that access
the server configuration variables (CV) database. These
CVs are stored in the decoder and control many of its
characteristics such as its address. For efficiency, a
copy of each CV value is also stored in the server
database. Commands such as KamCVGetValue and
KamCVPutValue communicate only with the server, not the
actual decoder. You then use the programming commands in
the next section to transfer CVs to and from the decoder.
O0KamCVGet Value

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 [n CV register
pCVValue int * 3 Out Pointer to CV value
1 Opaque object 1D handle returned by

KamDecoderPutAdd.

2 Range is 1-1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.

3 CV Value pointed to has a range of 0 to 255.

Return Value Type Range Description
iError short 1 Error flag

Page 13 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

17

~continued

18

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

1 ifrror = O for success. Nonzero is an error number
(see KamMiscGetErrorMsg). KamCVGetValue takes the
decoder object ID and configuration variable (CV) number
as parameters. It sets the memory pointed to by pCVValue
to the value of the server copy of the configuration

variable.

0KamCVPutValue

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 In CV register
iCVValue int 0255 In CV value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCVPutValue lakes the decoder object ID, configuration
variable (CV) number, and a new CV value as parameters.
It sets the server copy of the specified decoder CV to

iCVValue.

0KamCVGetknable

Parameter List Type Range Direction Description
IDecoderObjectlD long 1 in Decoder object ID
iCVRegint 1-1024 2 In CV number

pEnable int * 3 Out Pointer to CV bit mask
1 Opaque object [D handle returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is

given by KamCVGetMaxRegister.

3 0x0001 - SET_CV_INUSE 0x0002 - SET__CV_READ_DIRTY
0x0004 - SET_CV__WRITE_DIRTY 0x0008 -
SET_CV_ERROR_READ
0x0010 - SET_CV_ERROR_WRITE

Return Value Type Range Description
iError short 1 Error flag
1 iBrror = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg). KamCVGetEnable takes the
decoder object ID, configuration variable (CV) number,
and a pointer to store the enable flag as parameters. It
sets the location pointed to by pEnable.

0KamCVPutEnable

Parameter List Type Range Direction Description
iDecoderObjectID long 1 In Decoder object ID
iCVRegint 1-1024 2 In CV number
iEnableint 3 In CV bit mask

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is

given by KamCVGetMaxRegister.

3 0x0001 - SET_CV_INUSE 0x0002 - SET_CV_READ_DIRTY
0x0004 - SET_CV_WRITE_DIRTY 0x0008 -
SET__CV_ERROR_READ
0x0010 - SET_CV_ERROR__WRITE

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCVPulEnable takes the decoder object ID, configuration
variable (CV) number, and a new enable state as
parameters. It sets the server copy of the CV bit mask

to iEnable.

0KamCVGetName

Parameter List Type Range Direction Description

icv int 1-1024 In CV number

pbsCVNameString BSTR * 1 Out Pointer to CV
name string

1 Exact return type depends on language. It is

Cstring * for C++. Empty string on error.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamCVGetName takes a configuration variable (CV) number
as a parameter. It sets the memory pointed to by

10

15

20

25

30

35

40

45

50

55

60

65

pbsCVNameString to the name of the CV as defined in NMRA
Recommended Practice RP 9.2.2.

0KamCVGetMinRegister

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pMinRegister int * 2 Out Pointer to min CV

register number
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Normally 1-1024. 0 on error or if decoder does not
support CVs,

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCVGetMinRegister takes a decoder object [D as a

parameter. It sets the memory pointed to by pMinRegister

to the minimum possible CV register number for the

specified decoder.

0KamCVGetMaxRegister

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pMaxRegister int* 2 Out Pointer to max CV
register number

1 Opaque object [D handle returned by

KamDecoderPutAdd.

2 Normally 1-1024. 0 on eror or if decoder does not
support CVs.

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamCVGetMaxRegister takes a decoder object ID as a
parameter. It sets the memory pointed to by pMaxRegister
to the maximum possible CV register number for the
specified decoder.
A. Commands to program configuration variables

This section describes the commands read and
write decoder configuration variables (CVs). You should
initially transfer a copy of the decoder CVs to the
server using the KamProgramReadDecoderToDataBase command.
You can then read and modify this server copy of the CVs.
Finally, you can program one or more CVs into the decoder
using the KamProgramCV or KamProgramDecoderFromDataBase
command. Not that you must first enter programining mode
by issuing the KamProgram command before any programming
can be done.

0KamProgram
Parameter List Type Range Direction Description
1DecoderObjectID long 1 In Decoder object ID
iProgLogPort int 1-65535 2 In Logical
programming
port ID
iProgMode int 3 In Programming mode
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value for this server given by
KamPortGetMaxLogPorts.

3 0 - PROGRAM__MODE__NONE
1 - PROGRAM_MODE__ADDRESS
2 - PROGRAM_MODE_REGISTER
3 - PROGRAM__MODE_ PAGE
4 - PROGRAM_MODE__DIRECT
§ - DCODE__PRGMODE__OPS__SHORT
6 - PROGRAM__MODE_OPS_LONG

Relurn Value Type Range Description
iEtror short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg)

KamProgram take the decoder object ID, logical
programming port ID, and progi mode as p 7

It changes the command station mode from normal operation
(PROGRAM_MODE_NONE) to the specified programming mode.
Once in programming modes, any number of programming
commands may be called. When done, you must call

KamProgram with a parameter of PROGRAM__MODE_NONE to
return to normal operation.

Page 14 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

19

-continued

20

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

0KamProgramGetMode
Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iProglogPort int 1-65535 2 In Logical
programming
port ID
piProgMode int* 3 Out Programming mode
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value for this server given by
KamPortGetMaxILogPorts.

3 0 - PROGRAM__MODE__NONE
1 - PROGRAM_MODE_ADDRESS
2 - PROGRAM__MODE_REGISTER
3 - PROGRAM_MODE_PAGE
4 - PROGRAM__MODE__ DIRECT
S - DCODE_PRGMODE_OPS__SHORT
6 - PROGRAM_MODE_OPS_1ONG

Return Value Type Range Description
iError short 1 Error flag Description
1 iBrror = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamProgramGetMode take the decoder object ID, logical
programming port ID, and pointer to a place to store

the programming mode as parameters. It sets the memory
pointed to by piProgMode to the present programming mode.
0KamProgramGetStatus

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID
iCVRegint 0-1024 2 In CV number
piCVAlIStatus int * 3 Out Or'd decoder pro-

gramming status

1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 0 returns OR'd value for all CVs. Other values
return status tor just that CV.
3 0x0001 - SET_CV._INUSE

0x0002 - SET_CV_READ_DIRTY

0x0004 - SET_CV_WRITE_DIRTY

0x0008 - SET_CV_ERROR_READ

0x0010 - SET_CV_ERROR_WRITE

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamProgramGetStatus take the decoder object ID and
pointer to a place to store the OR'd decoder programming
status as parameters. It sets the memory pointed to by
piProgMode to the present programming mode.

OKamProgramReadCV

Parameter List Type Range Direction Description
IDecoderObjectlD long 1 In Decoder object ID
iCVRegint 2 In CV number

1 Opaque objecl ID handle returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamProgramCV takes the decoder object ID, configuration
variable (CV) number as parameters. It reads the

specified CV variable value to the server database.

OKamProgramCV

Parameter List Type Range Direction Descriplion
iDecoderObjectID long 1 In Decoder object ID
iCVRegint 2 In CV number
iCVValue int 0255 In CV value

1 Opaque object ID handie returned by

KamDecoderPutAdd.

2 Maximum CV is 1024. Maximum CV for this decoder is
given by KamCVGetMaxRegister.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamProgramCV takes the decoder object 1D, configuration
variable (CV) number, and a new CV value as parameters.
It programs (wriles) a single decoder CV using the
specified value as source data.
O0KamProgramReadDecoderToDataBase

Parameter List Type Range Direction Description

10 1DecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handie returned by
KamDecoderPutAdd.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

15 (see KamMiscGetErrorMsg).
KamProgramReadDecoderToDataBase takes the decoder object
ID as a parameter. Il reads all enabled CV values from
the decoder and stores them in the server database.
OKamProgramDecoderFromDataBase
Parameter List Type Range Direction Description

20 IDecoderObjectID long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd.

Return Value Type Range Description
iError shost 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

25 KamProgramDecoderFromDataBase takes the decoder object ID
as a parameter. It programs (writes) all enabled decoder
CV values using the server copy of the CVs as source
data.

A Commands to control all decoder types
This section describes the commands that all

30 decoder types. These commands do things such getting the
maximum address a given type of decoder supports, adding
decoders to the database, etc.

OKamDecoderGetMaxModels
Parameter List Type Range Direction Description
piMaxModels int* 1 Out Pointer to Max

15 mode] ID
1 Normally 1-65535. 0 on error.

Retury Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

40 KamDecoderGetMaxModels takes no parameters. It sets the
memory pointed to by piMaxModels to the maximum decoder
type ID.

OKamDecoderGetModelName

Parameter List Type Range Direction Description
iModel int 1-65535 1 In Decoder type ID
pbsModelName BSTR * 2 Out Decoder name

45 string
1 Maximum value for this server given by
KamBDecoderGetMaxModels.

2 Exacl return type depends on language. Il is
Cstring * for C++. Empty string on error.
Return Value Type Range Description

50 iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(sec KamMiscGetErrorMsg). KamPortGetModetName takes a
decoder type ID and a pointer to a string as parameters.

It sets the memory pointed to by pbsModeiName to a BSTR
containing the decoder name.

55 OKamDecoderSetModelToObj
Parameter List Type Range Direction Description
iModel int 1 In Decoder model ID
IDecoderObjectlD long 1 In Decoder object ID
1 Maximum value for this server given by
KamDecoderGetMaxModels.

0 2 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

65 KamDecoderSetModelToObj takes a decoder ID and decoder

object ID as parameters. It sets the decoder model type
of the decoder at address 1DecoderObjectID to the type

Page 15 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

21

-continued

22

~continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

specified by iModel.

O0KamDecoderGetMaxAddress

Parameter List Type Range Direction Description

iModel int 1 In Decoder type ID

piMaxAddress int* 2 Out Maximum decoder
address

1 Maximum value for this server given by

KamDecoderGetMaxModels

2 Model dependent. O returned on error.

Return Value Type Range Description

iError short 1 Error flag

i iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetMaxAddress takes a decoder type ID and a
pointer to store the maximum address as paramelers. It

sets the memory pointed to by piMaxAddress to the maximum
address supported by the specified decoder.
OKamDecoderChangeOldNewAddr

Parameter List Type Range Direction Description
101dObjID long 1 In Old decoder object ID
iNewAddr int 2 In New decoder address
pINewObjID long * 1 Out New decoder object ID
1 Opaque object [D handle returned by

KamDecoderPutAdd.

2 1-127 for short locomotive addresses. 1-10239 for

long locomotive decoders. 0-511 for accessory decoders.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderChangeOldNewAddr takes an old decoder object ID
and a new decoder address as parameters. It moves the

specified locomotive or accessory decoder to iNewAddr and

sets the memory pointed to by pINewObjID to the new

object ID. The old object ID is now invalid and should

no longer be used.

0KamDecoderMovePort

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iLogicalPortID int 1-655352 In Logical port ID

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderMovePort takes a decoder object ID and logical
port ID as parametess. It moves the decoder specified by
{DecoderObjectID to the controller specified by

iLogicalPortID.

0KamDecoderGetPort

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

piLogicalPortID int * 1-65535 2 Out Pointerto
logical port ID

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by

KamPortGetMaxLogPorts.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamDecoderMovePort takes a decoder object ID and pointer
lo a logical port ID as paramelers. It sets the memory
pointed to by pilogicalPortID to the logical port D
associated with IDecoderObjectID.
OKamDecoderCheckAddrinUse

Parameter List Type Range Direction Description
iDecoderAddress int 1 In Decoder address
iLogicalPortID int 2 In Logical Port ID
iDecoderClass int 3 In Class of decoder
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by

15

25

30

35

40

45

55

60

65

KamPortGetMaxLogPorts.

3 1 - DECODER_ENGINE_TYPE,
2 - DECODER_SWITCH_TYPE,
3 - DECODER_SENSOR__TYPE.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for successful call and address not in

use. Nonzero is an error number (see

KamMiscGetEmrorMsg). IDS__ERR__ADDRESSEXIST returned if
call succeeded but the address exists.
KamDecoderCheckAddrlaUse takes a decoder address, logical
port, and decoder class as parameters. It returns zero

if the address is not in use. It will return
IDS__ERR_ADDRESSEXIST if the call succeeds but the address
already exists. It will return the appropriate aon zero

error number if the calls fails.

O0KamDecoderGetModelFromObj

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

piModelint * 1-65535 2 Out Pointer to decoder
type ID

1 Opagque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value for this server given by

KambBecoderGetMaxModels.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetModelFromObj takes a decoder object ID and
pointer to a decoder type ID as parameters. It sets the
memory pointed to by piModel to the decoder type ID
associated with iDCCAddr.

0KamDecoderGetModelFacility

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object [D
pdwFacility long * 2 Out Pointer to decoder

facility mask
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 0 - DCODE_PRGMODE__ADDR
1 - DCODE_PRGMODE_ REG
2 - DCODE__PRGMODE_ PAGE
3 - DCODE_PRGMODE_DIR
4 - DCODE_PRGMODE_ FLYSHT
5 - DCODE_PRGMODE_FLYLNG
6 - Reserved
7 - Reserved
8 - Reserved
9 - Reserved
10 - Reserved
11 - Reserved
12 - Reserved
13 - DCODE_FEAT DIRLIGHT
14 - DCODE _FEAT LNGADDR
15 - DCODE__FEAT__CVENABLE
16 - DCODE_FEDMODE__ADDR
17 - DCODE_FEDMODE_REG
18 - DCODE_FEDMODE__PAGE
19 - DCODE_FEDMODE._DIR
20 - DCODE__FEDMODE_ FLYSHT
21 - DCODE_FEDMODE__ FLYLNG

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetModelFacility takes a decoder object ID and
pointer to a decoder facility mask as parameters. It

sets the memory pointed to by pdwFacility to the decoder
facility mask associated with iDCCAddr.

0KamDecoderGetObjCount

Parameter List Type Range Direction Description
iDecaderClass int 1 In Class of decoder
piObjCount int * 0-65535 Out Count of active

decoders
1 1 - DECODER_ENGINE_TYPE,
2 - DECODER__SWITCH._TYPE,

Page 16 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

23

-continued

24

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

3 - DECODER__SENSOR_TYPE.

Return Value Type Range Description®
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetObjCount takes a decoder class and a pointer
to an address count as parameters. It sets the memory
pointed to by piObjCount to the count of active decoders

of the type given by iDecoderClass.

0KamDecoderGetObjAtIndex
Parameter List Type Range Direction Description®
ilndex int 1 In Decoder array index
iDecoderClass int 2 In Class of decoder
plDecoderObjectlD long * 3 Out Pointer to decoder
object [D

1 0 to (KamDecoderGetAddressCount - 1).
2 1 - DECODER _ENGINE_TYPE,

2 - DECODER_SWITCH__TYPE,

3 - DECODER_SENSOR_TYPE.
3 Opaque object ID handle returned by
KamDecoderPutAdd.
Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetObjCount takes a decoder index, decoder
class, and a pointer to an object ID as parameters. It

sets the memory pointed to by plDecoderObjectID to the
selected object ID.

OKambDecoderPutAdd
Parameter List Type Range Direction Description
iDecoderAddress int 1 In Decoder address
iLogicalCmdPortID int 1655352 In Logical
command
port ID
iLogicalProgPortID int 1655352 In Logical
programming
port ID
iClearState int 3 In Clear state flag
iModel int 4 In Decoder model type ID
plDecoderObjectID long* 5 Out Decoder
object ID
1 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders. 0-511 for accessory decoders.
2 Maximum value for this server given by
KamPortGetMaxLogPorts.
3 0 - retain state, 1 - clear state.
4 Maximum value for this server given by
KamDecoderGetMaxModels.

5 Opagque object ID handle. The object ID is used to
reference the decoder.

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderPutAdd takes a decoder object ID, command
logical port, programming logical port, clear flag,

decoder model ID, and a pointer to a decoder object ID as
parameters. It creates a new locomotive object in the
locomotive database and sets the memory pointed to by
plDecoderObjectID to the decoder object ID used by the
server as a key.

O0KamDecoderPutDel

Parameter List Type Range Direction Description

IDecoderObjectiD long 1 In Decoder object ID
iClearState int 2 In Clear state flag

1 Opagque object ID handle returned by

KambDecoderPutAdd.

2 0 - retain state, 1 - clear state.

Return Value Type Range Description®
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderPutDel takes a decoder object ID and clear flag
as parameters. It deletes the locomotive object specified

by 1DecoderObjectiD from the locomotive database.
OKamDecoderGetMfgName

15

20

25

30

35

40

45

50

55

60

65

Parameter List Type Range Direction Description

{DecoderObjectlD long 1 In Decoder object ID

pbsMfgName BSTR * 2 Out Pointer to
manufacturer name

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact return type depends on language. It is

Cstring * for C++. Emply string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetMfgName takes a decoder object ID and
pointer to a manufacturer name string as parameters, It

sets the memory pointed to by pbsMfgName to the name of
the decoder manufacturer.

0KamDecoderGetPowerMode
Parameter List Type Range Direction Description
IDecoderObjectlD long 1 In Decoder object TD
pbsPowerMode BSTR * 2 Out Pointer to
decoder power
mode

1 Opaque object ID handle returned by
KamDecoderPutAdd.

2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.

Return Value Type Range Description®
iError short 1 Error flag
1 iBrror = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamDecoderGetPowerMode takes a decoder object ID and a

pointer to the power mode string as parameters. It sets

the memory pointed to by pbsPowerMode to the decoder

power mode.

0KamDecoderGetMaxSpeed

Parameter List Type Range Direction Description

1DecoderObjectlD long 1 In Decoder object ID

piSpeedStep int* 2 Out Pointer to max
speed step

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 14, 28, 56, or 128 for locomotive decoders. 0 for

accessory decoders.

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamDecoderGetMaxSpeed takes a decoder object ID and a
pointer to the maximum supported speed step as
parameters. It sets the memory pointed to by piSpeedStep
to the maximum speed step supported by the decoder.
A. Commands to control locomotive decoders

This section describes the commands that
control locomotive decoders. These commands control
things such as locomotive speed and direction. For
efficiency, a copy of all the engine variables such speed
is stored in the server. Commands such as KamEngGetSpeed
communicate only with the server, not the actual decoder.
You should first make any changes to the server copy of
the engine variables. You can send all changes to the
engine using the KamCmdCommand command.

OKamEngGetSpeed

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

IpSpeed int* 2 Out Pointer to locomotive
speed

IpDirection int* 3 Out Pointer to locomotive
direction

1 Opagque object ID handle returned by

KamDecoderPutAdd.

2 Speed range is dependent on whether the decoder is

set to 14, 18, or 128 speed steps and matches the values
defined by NMRA 89.2 and RP 9.2.1. 0 is stop and 1 is
emergency stop for all modes.

3 Forward is boolean TRUE and reverse is boolean
FALSE.
Return Value Type Range Description

Page 17 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

25

-continued

26

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGelErrorMsg).

KamEngGetSpeed takes the decoder object ID and pointers
to locations to store the locomotive speed and direction

as parameters. It sets the memory pointed to by IpSpeed

to the locomotive speed and the memory pointed to by
IpDirection to the locomotive direction.

0KamEngPutSpeed

Parameter List Type Range Direction Description®
IDecoderObjectiD long 1 Decoder object ID
iSpeed int* 2 In Locomotive speed
iDirection int* 3 In Locomotive direction
1 Opaque object 1D handle returned by

KamDecoderPutAdd.

2 Speed range is dependent on whether the decoder is

set to 14, 18, or 128 speed steps and matches the values
defined by NMRA $9.2 and RP 9.2.1. 0 is stop and 1 is
emergency stop for all modes.

3 Forward is boolean TRUE and reverse is boolean
FALSE.

Return Value Type Range
iError short 1 Error flag
1 iBrror = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngPutSpeed takes the decoder object ID, new
locomotive speed, and new locomotive direction as
parameters. It sets the locomotive database speed to

iSpeed and the locomotive database direction to

iDirection. Note: This command only changes the

locomotive database. The data is not sent to the decoder

until execution of the KamCmdCommand command, Speed is
set to the maximum possible for the decoder if iSpeed
exceeds the decoders range.

Description

0KamEngGetSpeedSteps

Parameter List Type Range Direction Description
IDecoderObject!D long 1 In Decoder object ID
IpSpeedSteps int * 14,28,128 Out Pointer to number

of speed steps
1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngGetSpeedSteps takes the decoder object ID and a
pointer to a location to store the number of speed steps
as a paramcter. It sets the memory pointed to by
IpSpeedSteps to the number of speed steps.

0KamEngPutSpeedSteps

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

iSpeedSteps int 14,28,128 In Locomotive speed
steps

1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPulSpeedSteps takes the decoder object ID and a new
number of speed steps as a parameter. It sets the number

of speed steps in the locomotive database to iSpeedSteps.

Note: This command only changes the locomotive database.

The data is not sent to the decoder until execution of

the KamCmdCommand command. KamDecoderGelMaxSpeed returns
the maximum possible speed for the decoder. Ar error is

generated if an attempt is made to set the speed steps

beyond this value.

OKamEngGetFunction

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionlD int 082 In Function ID number
IpFunction int* 3 Out Pointer to function
value

1 Opaque object [D handle returned by

KamDecoderPutAdd.

10

15

20

25

30

35

40

45

50

55

60

65

2 FL is 0. F1-F8 are 1-8 respectively. Maximum for

this decoder is given by KamEngGetFunctionMax. 3

Functlion active is boolean TRUE and inactive is boolean
Range

FALSE.
Type
1 Error flag

Return Value
iError short

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).

KamEngGetFunction takes the decoder object ID, a function
ID, and a pointer to the location to store the specified
function state as parameters. It sets the memory pointed

to by IpFunction to the specified function state.

Description

OKamEngPutFunction

Parameter List Type Range Direction Description
IDecoderObjectlD long 1 In Decoder object ID
iFusnctionID int 082 In Function [D number
iFunction int 3 In Function value

1 Opagque object ID handie returned by

KamDecoderPutAdd.

2 FL is 0. F1-F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax.

3 Function active is boolean TRUE and inactive is
boolean FALSE.

Return Value Type Range Description®
iError short 1 Error flag
1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPutFunction takes the decoder object ID, a function
ID, and a new function state as parameters. It sets the
specified locomotive database function state to

iFunction. Note: This command only changes the
locomotive database. The data is not sent to the decoder
until execution of the KamCmdCommand command.

OKamEngGetFunctionMax

Parameter List Type Range Direction Description
IDecoderObjectlD long 1 In Decoder object ID
piMaxFunction int* 0-8 Out Pointer to maximum

function number
1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngGetFunctionMax takes a decoder object ID and a
pointer to the maximum function ID as parameters. It
sets the memory pointed to by piMaxFunction to the
maximum possible function number for the specified

decoder.

O0KamEngGetName

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
pbsEngName BSTR * 2 Out Pointer to

locomotive name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngGetName takes a decoder object ID and a pointer to
the locomotive name as parameters. It sets the memory
pointed to by pbsEngName to the name of the locomotive.

OKamEngPutName

Parameter List Type Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
bsEngName BSTR 2 Out Locomotive name
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success. Nonzero is an error aumber

(see KamMiscGetErrorMsg).

Page 18 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 19 of 27

US 6,530,329 B2

27

-continued

28

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

KamEngPutName takes a decoder object ID and a BSTR as
parameters. It sets the symbolic locomotive name to

bsEngName.

OKamEngGetFunctionName

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 082 In Function ID number
pbsFcnNameString BSTR * 3 Out Pointer to

function name
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 FL is 0. F1-F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax. 3 Exact
return type depends on language. It is Cstring * for
C++. Empty string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iBrror® = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamEngGetFuncntionName takes a decoder object ID,
fuaction ID, and a pointer to the function name as
parameters. It sets the memory pointed to by
pbsFenNameString to the symbolic name of the specified
function.

OKamEngPutFunctionName

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object [D
iFunctionID int 082 In Function ID number
bsFecnNameString BSTR 3 In Function name

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 FL is 0. F1-F8 are 1-8 respectively. Maximum for
this decoder is given by KamEngGetFunctionMax.

3 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error Flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPutFunctionName takes a decoder object ID, function
ID, and a BSTR as parameters. It sets the specified

symbolic function name to bsFcnNameString.

O0KamEngGetConsistMax

Parameter List Type Range Direction Description

IDecoderObjectID long 1 In Decoder object ID

piMaxConsist int* 2 Out Pointer to max consist
number

1 Opaquc object ID handle returned by

KamDecoderPutAdd.

2 Command station dependent.

Return Value Type Range Description

iError short 1 Error flag

1 iBrror = O for success. Nonzero is an error number

(sce KamMiscGetErrorMsg).

KamEngGetConsistMax takes the decoder object ID and a
pointer to a location to store the maximum consist as
parameters. It sets the location pointed to by
piMaxConsist to the maximum number of locomotives that
can but placed in a command station controlled consist.
Note that this command is designed for command station
consisting. CV consisting is handled using the CV

commands.

OKamEngPutConsistParent

Parameter List Type Range Direction Description

IDCCParentObjID long 1 In Parent decoder
object ID

iDCCAliasAddr int 2 In Alias decoder address

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 1-127 for short locomotive addresses. 1-10239 for
long locomotive decoders.

Return Value Type Range Descriplion
iError short 1 Error flag
i iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamEngPutConsistParent takes the parent object ID and an
alias address as parameters. It makes the decoder

20

25

30

35

40

45

50

55

60

65

specified by IDCCParentObjID the consist parent referred
to by iDCCAliasAddr. Note that this command is designed
for command station consisting. CV consisting is handled
using the CV commands. If a new parent is defined for a
consist; the old parent becomes a child in the consist.

To delete a parent in a consist without deleting the
consist, you must add a new parent then delete the old
parent using KamEngPutConsistRemovcObj.

OKamEngPutConsistChild

Parameter List Type Range Direction Description

IDCCParentObjID long 1 In Parent decoder
object ID

IDCCObID long 1 In Decoder object ID

1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamEngPulConsistChild takes the decoder parent object ID
and decoder object ID as parameters. It assigns the

decoder specified by IDCCObJID to the consist identified
by IDCCParentObjID. Note that this command is designed
for command station consisting. CV consisting is handled
using the CV commands. Note: This command is invalid if
the parent has not been set previously using
KamEngPutConsistParent.

0KamEngPutConsistRemoveObj

Parameter List Type Range Direction Description
IDecoderObjectiD long 1 In Decoder object ID
1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description

iError short 1 Error flag

1 iBrror = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg)
KamEngPutConsistRemoveObj takes the decoder object [D as
a parameter. Il removes the decoder specified by
IDecoderObjectID from the consist. Note that this
command is designed for command station consisting. CV
consisting is handled using the CV commands. Note: If
the parent is removed, all children are removed also.
A. Commands to control accessory decoders

This section describes lhe commands that
control accessory decoders. These commands control
things such as accessory decoder activation state. For
efficiency, a copy of all the engine variables such speed
is stored in the server. Commands such as
KamAccGelFunction communicale only with the server, not
the actual decoder. You should first make any changes to
the server copy of the engine variables. You can send
all changes to the engine using the KamCmdCommand

command.

OKamAccGetFunction

Parameter List Type Range Direction Description

IDecoderObjectiD long 1 In Decoder object ID

iFunctionID int 0-312 In Function ID number

IpFunction int* 3 Out Pointer to function
value

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by

KamAccGetFunctionMax.

3 Function active is boolean TRUE and inactive is

boolean FALSE.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error aumber

(sec KamMiscGetErrorMsg).

KamAccGetFunction takes the decoder object ID, a function
ID, and a pointer to the location to store the specified
function state as parameters. It sets the memory pointed

to by IpFunction to the specified function state.
O0KamAccGetFunctionAll

Parameter List Type Range Direction Description
iDecoderObjectID long 1 In Decoder object ID
piValue int* 2 Out Function bit mask

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 20 of 27

US 6,530,329 B2

29

-continued

30

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

1 Opaque object 1D handle returned by

KamDecoderPutAdd.

2 Each bit represents a single function state.

Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range Description
iError short i Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccGetFunctionAll takes the decoder object ID and a
pointer to a bit mask as parameters. It sets each bit in

the memory pointed to by piValue to the corresponding
function state.

OKamAccPutFunction

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object [D
iFunctionID int 0-312 In Function ID oumber
iFunction int 3 In Function value

1 Opaque object [D handle returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by
KamAccGetFunctionMax.

3 Function active is boolean TRUE and inactive is

boolean FALSE.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccPutFunction takes the decoder object ID, a function
ID, and a new function state as parameters. It sets the
specified accessory database function state to 1Function.
Note: This command only changes the accessory database.
The data is not sent to the decoder until execution of

the KamCmdCommand command.

OKamAccPutFunctionAll

Parameter List Type Range Direction Description

{DecoderObjectID long 1 In Decoder object ID

iValue int 2 In Pointer to function state
array

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Each bit represents a single function state.

Maximum for this decoder is given by

KamAccGelFunctionMax.

Return Value Type Range Description

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccPutFunctionAll takes the decoder object ID and a
bit mask as parameters, It sets all decoder function
enable states to match the state bits in iValue. The
possible enable states are TRUE and FALSE. The data is
not sent to the decoder until execution of the
KamCmdCommand command.

0KamAccGetFunctionMax

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
piMaxFunction int* 0-312 Out Pointer to maximum

function number
1 Opagque object ID handie returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccGetFunctionMax takes a decoder object ID and
pointer to the maximum function number as parameters. It
sets the memory pointed to by piMaxFunction to the
maximum possible function number for the specified

decoder.

OKamAccGetName

Parameter List Type Range Direction Description
IDecoderObjectiD long 1 In Decoder object ID
pbsAccNameString BSTP * 2 Out Accessory name

1 Opaque object ID handle returned by

10

15

20

25

30

35

40

45

50

55

60

65

KamBDecoderPutAdd.
2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccGetName takes a decoder object ID and a pointer to
a string as parameters. It sels the memory pointed to by
pbsAccNameString to the name of the accessory.

OKamAccPutName

Parameter List Type Range Direction Description
iDecoderObjectID long 1 in Decoder object ID
bsAccNameString BSTR 2 In Accessory name

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamAccPutName takes a decoder object ID and a BSTR as
parameters, It sets the symbolic accessory name to

bsAccName.

O0KamAccGetFunctionName

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-312 In Function ID number
pbsFenNameString BSTR * 3 Out Pointer to
function name

1 Opaque object ID handie returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by
KamAccGetFunctionMax.

3 Exact return type depends on language. It is

Cstring * for C++. Empty string on error.

Return Value Type Range Description®

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamAccGetFuncntionName takes a decoder object ID,
function ID, and a pointer to a string as parameters. It
sets the memory pointed to by pbsFenNameString to the
symbolic name of the specified function.

OKamAccPutFunctionName

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
iFunctionID int 0-312 In Function [D number
bsFcoNameString BSTR 3 In Function

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum for this decoder is given by

KamAccGetFunctionMax.

3 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccPutFunctionName takes a decoder object ID, function
ID, and a BSTR as parameters. It sets the specified

symbolic function name to bsFcnNameString.

OKamAccRegFeedback

Parameter List Type Range Direction Description®
1DecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 1 In Server node name
iFunctionID int 0313 In Function ID number
1 Opaque object ID handle returned by

KamDecoderPutAdd,

2 Exact p type depends on language. It is

LPCSTR for C++.

3 Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range Description

iError short 1 Error flag

1 iErrore = 0 for success. Nonzero is an error number

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

31

-continued

32

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

(see KamMiscGetErrorMsg).

KamAccRegFeedback takes a decoder object ID, node name
string, and function ID, as parameters. Il registers

interest in the function given by {FunctionID by the

method given hy the node name string bsAccNode.
bsAccNode identifies the server application and method to
call if the function changes state. Its format is
“\{Server}\{App}.{Method}” where {Server} is the server
name, {App} is the application name, and {Method} is the
method name.

OKamAccRegFeedbackAll

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccRegFeedbackAll takes a decoder object ID and node
name string as parameters. It registers interest in all
functions by the method given by the node name string
bsAccNode. bsAccNode identifies the server application

and method to call if the function changes state. Its

format is “\{Server\{App}.{Method}” where {Server} is
the server name, {App} is the application name, and
{Method} is the method name.

0KamAccDelFeedback

Parameter List Type Range Direction Description
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
iFunctionID int 0-313 In Function ID number
1 Opagque object [D handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

3 Maximum for this decoder is given by
KamAccGetFunctionMax.

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamAccDelFeedback takes a decoder object ID, node name
string, and function ID, as parameters. It deletes

interest in the function given by iFunctioniD by the
method given by Lhe node name string bsAccNode.
bsAccNode identifies the server application and method to
call if the function changes state. Its format is
"\{Server\{App}.{Method}” where {Server} is the server
name, {App} is the application name, and {Method} is the
method name.

OKamAccDelFeedbackAll

Parameter List Type Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamAccDelFeedbackAll takes a decoder object ID and node
name string as parameters. It deletes interest in all
functions by the method given by the node name string
bsAccNode. bsAccNode identifies the server application
and method to call if the function changes state. Its
formal is “W{Server\{App}.{Method}” where {Server} is
the server name, {App} is the application name, and
{Method} is the method name.
A. Commands to control the command station

This section describes the commands that
contro} the command station. These commands do things

15

20

25

30

35

40

45

50

55

60

65

such as controlling command station power. The steps to
control a given command station vary depending on the
type of command station.

0KamOprPutTurnOnStation

Parameter List Type Range Direction Description
iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamOprPutTurnOnStation takes a logical port ID as a
parameter. It performs the steps necessary to tum on

the command station. This command performs a combination
of other commands such as KamOprPutStartStation,
KamOprPutClearStation, and KamOprPutPowerOn,
0KamOprPutStartStation

Parameter List Type Range Direction Description
iLogicalPortID int 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamOprPutStartStation takes a logical port ID as a
parameter. It performs the steps necessary to start the
command station.

0KamOprPutClearStation

Parameter List Type Range Direction Description
iLogicalPortID int 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(se¢ KamMiscGetErrorMsg).

KamOprPutClearStation takes a logical port ID as a
parameter. It performs the steps necessary to clear the
command station queve.

0KamOprPutStopStation

Parameter List Type Range Direction Descriplion
il.ogicalPortID intl 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamOprPutStopStation takes a logical port ID as a
parameter. [t performs the steps necessary to stop the
command station,

OKamOprPutPowerOn

Parameter List ~ Type Range Direction Description
iLogicalPortID int 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Vaiue Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamOprPutPowerOn takes a logical port ID as a parameter.
It performs the steps necessary to apply power to the

track.

0KamOprPutPowerOff

Parameter List Type Range Direction Description
iLogicalPortID int 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamOprPutPowerOH takes a logical port ID as a parameter.
It performs the steps necessary to remove power from the
track.

Page 21 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

33

-continued

34

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

0KamOprPutHardReset

Parameter List Type Range Direction Description
iLogicalPortID it 1655351 In Logical port ID
1 Maximum value tor this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGelErrorMsg).
KamOprPutHardReset takes a logical port ID as a
parameter. It performs the steps necessary to perform a
hard reset of the command station.
0KamOprPutEmergencyStop

Parameter List Type Range Direction
iLogicalPortlD int 1-655351 In

Description
Logical port ID

1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError. = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamOprPutEmergencyStop takes a logical port ID as a
parameter. It performs the steps necessary to broadcast
an emergency stop command to all decoders.
0KamOprGetStationStatus

Parameter List Type Range Direction Description

iLogicalPortID int 1655351 In Logical port ID

pbsCmdStat BSTR * 2 Out Command station
status string

1 Maximum value for this server given by

KamPortGetMaxLogPorts.

2 Exact return type depends on language. It is

Cstring * for C++.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamOprGetStationStatus takes a logical port ID and a
pointer to a string as parameters. It set the memory
pointed to by pbsCmdStat to the command station status.
The exact format of the status BSTR is vendor dependent.
A Commands to configure the command station
communication port

This section describes the commands that
configure the cc d station cc port. These
commands do things such as setting BAUD rate. Several of
the commands in this section use the numeric controller
ID (iControllerID) to identify a specific type of
command station controller. The following table shows
the mapping between the controller ID (iControllerID) and
controller name (bsControllerName) for a given type of
command station controller.

iControllerID bsControlierName Description
0 UNKNOWN Unknown controller type
1 SIMULAT Interface simulator
2 LENZ_1x Lenz version 1 serial support module
3 LENZ_2x Lenz version 2 serial support module
4 DIGIT__DT200 Digitrax direct drive support using
DT200
5 DIGIT__DCS100 Digitrax direct drive support using
DCS$100
6 MASTERSERIES North coast engineering master
series
7 SYSTEMONE System one
8 RAMFIX RAMFIxx system
9 SERIAL NMRA serial interface
10 EASYDCC CVP Easy DCC
1 MPK6050 Marklin 6050 interface (AC and DC)
12 MPK6023 Marklin 6023 interface (AC)
13 DIGIT_PR1 Digitrax direct drive using PR1
14 DIRECT Direct drive interface routine
15 ZTC ZTC system ltd
16 TRIX TRIX controller
ilndex Name iValue Values

0 RETRANS 10-255
1 RATE 0 - 300 BAUD, 1 - 1200 BAUD, 2 - 2400 BAUD,
3 - 4300 BAUD, 4 - 9600 BAUD, 5 - 14400 BAUD,

10

15

20

25

30

35

40

45

S0

55

60

65

6 - 16400 BAUD, 7 - 19200 BAUD

2 PARITYO - NONE, 1 - ODD, 2 - EVEN, 3 - MARK,
4 - SPACE

3 STOP 0-1bit, 1- 1.5 bits, 2 - 2 bits

4 WATCHDOG 500 - 65535 milliseconds. Recommended
value 2048

5 FLOW 0 - NONE, 1 - XON/XOFF, 2 - RTS/CTS, 3 BOTH

6 DATA 0 - 7 bits, 1 - 8 bits

7 DEBUGBIt mask. Bit 1 sends messages to debug file.
Bit 2 sends messages to the screen. Bit 3 shows
queue data. Bit 4 shows UI status. Bit 5 is
reserved. Bit 6 shows semaphore and critical
sections. Bit 7 shows miscellancous messages. Bit
8 shows comm port activity. 130 decimal is
recommended for debugging.

8 PARALLEL

0KamPortPutConfig

Parameter List Type Range Direction Description*®
ilogicalPortID int 1655351 In Logical port ID

iIndex int 2 In Configuration lype index
iValue int 2 In Configuration value
iKey int 3 In Debug key

1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 See FIG. 7: Controller configuration Index values

for a table of indexes and values.

3 Used only for the DEBUG ilndex value. Should be set
to 0.

Return Value Type Range Description
iError short 1 Error flag
1 iError = O for success, Nonzero is an error number

(see KamMiscGetErrorMsg).

KamPortPutConfig takes a logical port ID, configuration
index, configuration value, and key as parameters. It

sets the port parameter specified by ilndex to the value
specified by iValue. For the DEBUG ilndex value, the

debug file path is C:\Temp\Debug {PORT}.txt where {PORT}
is the physical comm port ID.

O0KamPortGetConfig

Parameter List Type Range Direction Description
iLogicalPortID int 1655351 In Logical port ID
ilndex int 2 In Configuration type index
piValue int* 2 Ou Pointer to configuration value
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 See FIG. 7: Controller configuration Index values

for a table of indexes and values.

Return Value Type Range Description
iError short i Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamPortGetConfig takes a logical port ID, configuration
index, and a pointer to a configuration value as
parameters, It sets the memory pointed to by piValue to
the specified configuration value.

OKamPortGetName

Parameter List Type Range Direction Description

iPhysicalPortID int 1655351 In Physical port
number

pbsPortName BSTR * 2 Out Physical port name

1 Maximum value for this server given by

KamPortGetMaxPhysical.

2 Exact return type depends on language. It is

Cstring * for C++. Empty string on error.

Return Value Type Range Description

iError short 1 Error Aag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamPortGetName takes a physical port [D number and a
pointer to a port name string as parameters. It sets the
memory pointed to by pbsPortName to the physical port
name such as “COMM1.”
OKamPortPutMapController

Parameter List Type Range Direction
iLogicalPortID int 1-65535 1 In
iControllerID int 1655352 In

Description
Logical port ID
Command station
type ID

Page 22 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006

US 6,530,329 B2

35

-continued

36

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

iCommPortID int 1-655353 In Physical comm
port ID

1 Maximum value for this server given by

KamPortGetMaxLogPorts.

2 See FIG. 6: Controller ID to controller name

mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

3 Maximum value tor this server given by
KamPortGetMaxPhysical.

Return Value Type Range Description
iError short 1 Error flag

1 iBrror = 0 for success. Nonzero is an error number

(sec KamMiscGetErrorMsg).

KamPortPutMapControlier takes a logical port ID, a
command station type ID, and a physical communications
port ID as parameters. It maps iLogicalPortID to
iCommPortID for the type of command station specified by
iControllerID.

OKamPortGetMaxLogPorts

Parameter List Type Range Direction Description®

piMaxlogicalPorts int * 1 Out Maximum logical
port ID

1 Normally 1-65535. O returned on error.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamPortGetMaxLogPorts takes a pointer to a logical port
ID as a parameter. [t sets the memory pointed to by
piMaxLogicatPorts to the maximum logical port ID.

0KamPortGetMaxPhysical

Parameter List Type Range Direction Description

pMaxPhysical int* 1 Out Maximum physical
port ID

pMaxSerial int* 1 Out Maximum serial
port ID

pMaxParallel int* 1 Out Maximum parallel
port ID

1 Normally 1-65535. 0 returned on error.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamPortGetMaxPhysical takes a pointer to the number of
physical ports, the number of serial ports, and the
number of parallel ports as parameters. It sets the
memory pointed to by the parameters to the associated
values
A. Commands that control command flow to the command
station

This section describes the commands that
control the command flow to the command station. These
commands do things such as connecting and disconnecting
from the command station.

OKamCmdConnect

Parameter List Type Range Direction Description®
iLogicalPortiD int 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxiogPorts.

Return Value ‘Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCmdConnect takes a logical port ID as a parameter. It
connects the server to the specified command station.
0KamCmdDisConnect

Parameter List Type Range Direction Description

iLogicalPortID int 1655351 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is aa error number

(see KamMiscGetErrorMsg).

KamCmdDisConnect takes a logical port ID as a parameter.
It disconnects the server to the specified command

station.

10

15

20

25

30

35

40

45

50

55

60

65

0KamCmdCommand

Parameter List Type Range Direction Description
IDecoderObjectlD long 1 In Decoder object ID
1 Opaque object ID handle returned by

KamDecoderPutAdd.

Return Value Type Range Description

iError short 1 Error flag

1 iFrror = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamCmdCommand takes the decoder object ID as a parameter.
It sends all state changes from the server database to
the specified Jocomotive or accessory decoder.
A, Cab Control Commands
This section describes commands that controt
the cabs attached to a command station.

O0KamCabGetMessage

Parameter List Type Range Direction Description
iCabAddress int 1655351 In Cab address
pbsMsg BSTR * 2 Out Cab message string
1 Maximum value is command slalion dependent.

2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCabGetMessage takes a cab address and a pointer to a
message string as parameters. It sets the memory pointed
to by pbsMsg to the present cab message.

0KamCabPutMessage

Parameter List Type Range Direction Description
iCabAddress int 1 In Cab address
bsMsg BSTR 2 Out Cab message string
1 Maximum value is command station dependent.

2 Exact parameter type depends on language. It is
LPCSTR for C++.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCabPutMessage takes a cab address and a BSTR as

parameters. It sets the cab message to bsMsg.

O0KamCabGetCabAddr

Parameter List Type Range Direction Description®
IDecoderObjectID long 1 In Decoder object ID
piCabAddress int * 1-655352 Out Pointer to Cab

address
1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value is command station dependent.
Return Value Type Range Descriptioni
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamCabGetCabAddr takes a decoder object ID and a pointer
to a cab address as parameters. It set the memory

pointed to by piCabAddress to the address of the cab

attached to the specified decoder.

OKamCabPutAddrToCab

Parameter List Type Range Direction Description

IDecoderObjectID long 1 in Decoder object ID
iCabAddress int 1655352 In Cab address

1 Opaque object ID handle returned by

KamDecoderPutAdd.

2 Maximum value is command station dependent.

Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamCabPutAddrToCab takes a decoder object ID and cab

address as | ters. It hes the decoder specified
by iDCCAGddr to the cab specified by iCabAddress.
A. Miscellaneous Commands

This section describes miscellaneous commands
that do not fit into the other categories.
OKamMiscGetErrorMsg
Parameter List Type Range Direction Description

Page 23 of 27

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 24 of 27

US 6,530,329 B2

37

-continued

38

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

iBrror int 0655351 In Error flag
1 iError = 0 for success. Nonzero indicates an error.
Return Value Type Range Description
bsErrorString BSTR 1 Error string

1 Exact retun type depends on language. It is
Cstring for C++. Empty string on error.
KamMiscGetErrorMsg takes an error flag as a parameter.
It returns a BSTR containing the descriptive error
message associated with the specified error flag.
0KamMiscGetClockTime

Parameter List Type Range Direction Description
iLogicalPortlD int 1655351 In Logical port ID
iSelectTimeMode int 2 In Clock source
piDay int* 0-6 Out Day of week
piHours int* 0-23 Out Hours
piMinutes int* 0-59 Out Minutes
piRatio int* 3 Out Fast clock ratio
1 Maximum value for this server given by
KamPortGetMaxLogPorts.

2 0 - Load from command station and sync server.

1 - Load direct from server. 2 - Load from cached server
copy of command station time.

3 Real time clock ratio.

Return Value Type Range Description
iEcror short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscGetClockTime takes the port ID, the time mode, and
pointers to locations to store the day, hours, minutes,
and fast clock ratio as parameters. It sets the memory
pointed to by piDay to the fast clock day, sets pointed
to by piHours to the fast clock hours, sets the memory
pointed to by piMinutes to the fast clock minutes, and
the memory pointed to by piRatio to the fast clock ratio.
The servers local time will be returned if the command
station does not support a fast clock.
0KamMiscPutClockTime

Parameter List Type Range Direction Description
iLogicalPortlD int 1655351 In Logical port ID
iDay int 0-6 In Day of week
iHours int 0-23 In Hours
iMinutes int 0-59 In Minutes

iRatio int 2 In Fast clock ratio
1 Maximum value for this server given by
KamPortGetMaxLogPorts. 2 Real time clock ratio,

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(sce KamMiscGetErrorMsg).

KamMiscPutClockTime takes the fast clock logical port,
the fast clock day, the fast clock hours, the fast clock
minutes, and the fast clock ratio as parameters. It sets
the fast clock using specified parameters.

O0KamMiscGetlnterface Version

Parameter List Type Range Direction Description

pbsinterfaceVersion BSTR * 1 Out Pointer to interface
version string

1 Exact return type depends on language. It is

Cstring * for C++, Empty string on error.

Retura Value Type Range Description
ifrror short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamMiscGetlnterface Version takes a pointer to an
interface version string as a parameter. It sets the

memory pointed to by pbsInterface Version to the interface
version string. The version string may contain multiple
lines depending on the number of interfaces supported.

0KamMiscSaveData

Parameter List Type Range Direction Description
NONE

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(sece KamMiscGetErrorMsg).
KamMiscSaveData takes no parameters. It saves all server
data to permanent storage. This command is run

10

20

25

30

35

45

50

Ss

60

65

automatically whenever the server stops running. Demo
versions of the program cannot save data and this command
will return an error in that case.
OKamMiscGetControllerName

Parameter List Type Range Direction Description

iControllerID int 1655351 In Command station
type ID

pbsName BSTR * 2 Out Command station type
name

1 See FIG. 6: Controller ID to controtler name

mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

2 Exact return type depends on language. It is
Cstring * for C++, Empty string on eror.

Return Value Type Range Description

pbsName BSTR 1 Command station type name
Return Value Type Range Description

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscGetControllerName takes a command station type ID
and a pointer to a type name string as parameters. It

sels the memory pointed to by pbsName to the command
station type name.

O0KamMiscGetControllerNameAtPort

Parameter List Type Range Direction Description

iLogicalPortID int 1655351 In Logical port ID

pbsName BSTR * 2 Out Command station type
name

1 Maximum value for this server given by

KamPortGetMaxLogPorts.

2 Exact return type depends on language. It is
Cstring * for C++. Empty string on error.

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(sece KamMiscGetErrorMsg).

KamMiscGetControllerName takes a logical port ID and a
pointer to a command station type name as parameters. It
sets the memory pointed to by pbsName to the command
station type name for that logical port.
OKamMiscGetCommandStation Value

Parameter List Type Range Direction Description

iControllerID int 1-655351 In Command station
type ID

iLogicalPorlID int 1-655352 . In Logical port ID

ilndex int 3 In Command station array index

piValue int * 0-65535 Out Command station value

1 See FIG. 6: Controller ID to controller name

mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

2 Maximum value for this server given by
KamPortGetMaxLogPorts.

3 0 to KamMiscGetCommandStationIndex .

Return Value Type Range Description
iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).
KamMiscGetCommandStationValue takes the controller ID,
logical port, value array index, and a pointer to the
location 1o store the selected value. It sets the memory
peinted to by piValue to the specificd command station
miscellaneous data value.
OKamMiscSetCommandStationValue

Parameter List Type Range Direction Description

iControllerID int 1655351 In Command station
type ID

iLogicalPortID int 1655352 In Logical port ID

ilndex int 3 in Command station array index

iValue int 0-65535 In Command station Value

1 See FIG. 6: Controller ID (o controller name

mapping for values. Maximum value for this server is
given by KamMiscMaxControllorID.

2 Maximum value for this server given by
KamPortGetMaxLogPorts. 3 0 to
KamMiscGetCommandStationlndex.

Return Value Type Range Description

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 25 of 27

US 6,530,329 B2

39

~continued

40

-continued

APPLICATION PROGRAMMING INTERFACE

APPLICATION PROGRAMMING INTERFACE

iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscSetCommandStation Value takes the controller 1D,

logical port, value array index, and new miscellaneous

data value, It sets the specified command station dala

to the value given by piValue.

0KamMiscGetCe dStationIndex

Parameter List Type Range Direction Description
iControllerID int 1655351 In Command station
type ID
Logical port ID

iLogicalPortID int 1655352 In

pilndex int 0-65535 Ou Pointer to maximum
index
1 See FIG. 6: Controller ID to controller name

mapping for values. Maximum value for this server is
given by KamMiscMaxControllerID.

2 Maximum value for this server given by
KamPortGetMaxLogPorts.

Return Value Type Range Description
iError short 1 Error flag

1 iError = O for success. Nonzero is an error number

(see KamMiscGelErrorMsg).
KamMiscGetCommandStationIndex takes the controller ID,
logical port, and a pointer to the location to store the
maximum index. It sets the memory pointed to by pilndex
to the specified command station maximum miscelianeous
data index,
0KamMiscMaxControllerID
Parameter List Type Range Direction Description
piMaxControllerlD int * 1-655351 Out Maximum

. controller type ID
1 See FIG. 6: Controller ID to controller name

mapping for a list of controller ID values. O returned

on error.

Return Value Type Range Description
iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number

(see KamMiscGetErrorMsg).

KamMiscMaxControllerID takes a pointer to the maximum
controller ID as a parameter. It sets the memory pointed

to by piMaxControllerID to the maximum controller type

.

0KamMiscGetControlierFacility

Parameter List Type Range Direction Description

iControllerID int 1655351 In Command statlon
type ID
pdwFacility long * 2 Out Pointer to command

station facility mask
1 See FIG. 6: Controller ID to controller name
mapping for values. Maximum value for this server is
gwen by KamMiscMaxControllerID.
0 - CMDSDTA_PRGMODE ADDR
1- CMDSDTA_PRGMODE_REG
2 - CMDSDTA_PRGMODE_PAGE
3 - CMDSDTA_PRGMODE__DIR
4 - CMDSDTA_PRGMODE__FLYSHT
5 - CMDSDTA__PRGMODE__FLYING
6 - Reserved
7 - Reserved
8 - Reserved
9 - Reserved
10 - CMDSDTA_SUPPORT_CONSIST
11 - CMDSDTA__SUPPORT_LONG
12 - CMDSDTA_SUPPORT._FEED
13 - CMDSDTA_SUPPORT_2TRK
14 - CMDSDTA_PROGRAM_TRACK
15 - CMDSDTA_PROGMAM__POFF
16 - CMDSDTA_FEDMODE__ADDR
17 - CMDSDTA_FEDMODE__REG
18 - CMDSDTA_FEDMODE_PAGE
19 - CMDSDTA_FEDMODE_DIR
20 - CMDSDTA_FEDMODE__FLYSHT
21 - CMDSDTA_FEDMODE_FLYLNG

30 - Reserved
31 - CMDSDTA_SUPPORT_FASTCLK
Return Value Type Range Description

15

25

35

45

50

55

60

65

iError short 1 Error flag

1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg).
KamMiscGetControllerFacility takes the controller ID and
a pointer to the location to store the selected

controller facility mask. It sets the memory pointed to

by pdwFacility to the specified command station facility
mask.

The terms and expressions which have been employed in
the foregoing specification are used therein as terms of
description and not of limitation, and there is no intention,
in the use of such terms and expressions, of excluding
equivalents of the features shown and described or portions
thereof, it being recognized that the scope of the invention
is defined and limited only by the claims which foliow.

What is claimed is:

1. A method of operating a digitally controlled model
railroad comprising the steps of:

(a) transmitting a first command from a first program to an

interface;

(b) transmitting a second command from a second pro-

gram to said interface; and

(c) sending third and fourth commands from said interface

representative of said first and second commands,
respectively, to a digital command station.

2. The method of claim 1, further comprising the steps of:

(a) providing an acknowledgment to said first program in

response to receiving said first command by said inter-
face prior to sending said third command to said digital
command station; and

(b) providing an acknowledgment to said second program

in response to receiving said second command by said
interface prior to sending said fourth command to said
digital command station.

3. The method of claim 2, further comprising the steps of:

(a) selectively sending said third command to one of a

plurality of digital command stations; and

(b) selectively sending said fourth command to one of

said plurality of digital command stations.

4. The method of claim 3, further comprising the step of
receiving command station responses representative of the
state of said digitally controlled model railroad from said
plurality of digital command stations.

5. The method of claim 4, further comprising the step of
comparing said command station responses t0 previous
commands sent to at least one of said plurality of digital
command stations to determine which of said previous
commands it corresponds with.

6. The method of claim §, further comprising the steps of:

(2) maintaining a sending queue of commands to be

transmitted to said plurality of digital command sta-
tions; and

(b) retransmitting at least one of said commands in said

sending queue periodically until removed from said
sending queue as a result of the comparison of said
command station responses to previous commands.

7. The method of claim 6, further comprising the step of
updating a database of the state of said digitally controlled
model railroad based upon said receiving command station
responses representative of said state of said digitally con-
trolled model railroad.

8. The method of claim 7, further comprising the step of
providing said acknowledgment to said first program in

Case 3:06-cv-01905-JSW Document 47

Filed 06/09/2006 Page 26 of 27

US 6,530,329 B2

41

response to receiving said first command by said interface
together with state information from said database related to
said first command.

9. The method of claim 8 wherein said first command and
said third command are the same command, and said second
command and said fourth command are the same command.

10. A method of operating a digitally controlled model
railroad comprising the steps of:

(a) transmitting a first command from a first program to an

interface; and

(b) said interface selectively sending a second command

represcntative of said first command to one of a plu-
rality of digital command stations based upon informa-
tion contained within at least one of said first and
seccond commands.

11. The method of claim 10, further comprising the steps
of:

(a) transmitting a third command from a second program

to said interface; and

(b) said interface selectively sending a fourth command

representative of said third command to one of said
plurality of digital command stations based upon infor-
mation contained within at least one of said third and
fourth commands.

12. The method of claim 10 wherein said first program
and said interface are operating on the same computer.

13. The method of claim 11 wherein said first program,
said second program, and said interface are all operating on
different computers.

14. The method of claim 10, further comprising the step
of providing an acknowledgment to said first program in
response to receiving said first command by said interface
prior to sending said second command to one of said
plurality of said digital command stations.

15. The method of claim 10 wherein said interface com-
municates in an asynchronous manner with said first pro-
gram while communicating in a synchronous manner with
said plurality of digital command stations.

16. A method of operating a digitally controlled model
railroad comprising the steps of:

(a) transmitting a first command from a first program to an

interface;

(b) transmitting a second command from a second pro-

gram to said interface; and

(c) said interface sending a third and fourth command

representative of said first command and said second
command, respectively, to the same digital command
station.

17. The method of claim 16 wherein said interface com-
municates in an asynchronous manner with said first and
second programs while communicating in a synchronous
manner with said digital command station.

18. The method of claim 16, further comprising the step
of providing an acknowledgment to said first program in
response to receiving said first command by said interface
prior to sending said third command to said digital command
station.

19. A method of operating a digitally controlled model
railroad comprising the steps of:

(a) transmitting a first command from a first program to a

first processor; and

(b) said first processor providing an acknowledgment 1o

said first program indicating that said first command
has properly executed prior (o execution of commands
related to said first command by said digitally con-
trolled model railroad.

20. The method of claim 19, further comprising the step
of sending said first command to a second processor which

10

15

3

[

40

45

50

55

60

65

42

processes said first command into a state suitable for a
digital command station.

21. The method of claim 19, further comprising the steps
of:

(a) transmitting a second command from a second pro-

gram to said first processor; and

(b) said first processor selectively providing an acknowl-
edgment to said second program indicating that said
second command has properly executed prior to execu-
tion of commands related to said second command by
said digitally controlled model railroad.

22. The method of claim 21, further comprising the steps

of:

(a) sending a third command representative of said first
command to one of a plurality of digital command
stations based upon information contained within at
least one of said first and third commands; and

(b) sending a fourth command representative of said
second command to one of said plurality of digital
command stations based upon information contained
within at least one of said second and fourth com-
mands.

23. A method of operating a digitally controlled model

railroad comprising the steps of:

(a) transmitting a first command from a first program to an
asynchronous command processor;

(b) said asynchronous command processor providing an
acknowledgment to said first program indicating that
said first command has properly executed prior to
execution of said first command by said digitally con-
trolled model railroad,

(c) sending said first command to a command queue

where said asynchronous command processor consid-

ers the intended destination device of said first com-
mand; and

(d) processing said first command by said synchronous
command processor into a suitable format for execution
by a digital command station for said digitally con-
trolled model railroad.

24. The method of claim 23 further comprising the steps

of: ’

(a) receiving responses from said digital command sta-
tion; and

(b) updating a first database of the state of said digitally
controlled model railroad based upon said responses
from said digital command station.

25. The method of claim 24, further comprising the steps

of:

(a) sending a first response to said command queue from
said synchronous command processor where said syn-
chronous command processor considers said command
queue the intended destination device of said first
response; and

(b) processing said first response by said asynchronous
command processor into a suitable format for said first
program.

26. The method of claim 25, further comprising the step
of updating a second database of the state of said digitally
controlled model railroad by said asynchronous command
processor based upon said first response from said synchro-
nous command processor.

27. The method of claim 26, further comprising the step
of querying said second database by said asynchronous
command processor providing said acknowledgment to said
first program providing the information requested and not
sending said first command to said command queue.

* ok ok %k Kk

Case 3:06-cv-01905-JSW Document 47 Filed 06/09/2006 Page 27 of 27

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,530,329 B2 Pagelof 1
DATED : March 11, 2003
INVENTOR(S) : Katzer

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 2,
Line 38, change “model railroad In” to -- model railroad. In --

Signed and Sealed this

Fifteenth Day of March, 2005

WD

JON W. DUDAS
Director of the United States Patent and Trademark Office

