Tanner Declaration Exhibit F
Re: KAM Industries Patents, your communication of September 18th, 2002

Dear Mr. Russell:

I have received your communication of September 18th, 2002 in regard to the matter of Intellectual Property of KAM Industries (Mr. Matt Katzer).

Your concern is stated as software programs that have "...the capability of sending commands to one of a plurality of digital command stations....".

The software programs WinLok 1.5, released in 1993, and WinLok 2.0, released in 1995, have both been capable of being configured for the TannerSoft feature of "MultiDrive", by selectively sending commands, to operate a simultaneous plurality of digital command stations connected by different communication links from a plurality of graphical user interfaces within the software. Both of these products have been widely reviewed in model railroad publications in both Germany and the US in at least 1994 and 1995, and subsequently.

I include in Annex I a copy of two reviews performed by Larry Puckett in the magazine "Model Railroading" in March, and December 1995. Note that the MultiDrive capability of WinLok 1.5 is clearly mentioned in the March 1995 review and again, Puckett notes that the WinLok 2.0 features remain "...essentially the same... with the added capabilities he then enumerates. Also included in Annex I is an article by Tobias Frydman published in MIBA Special Nr. 33 from 1997 that reviews WinLok 2.0 and demonstrates multiple keyboards, track control diagrams and even an emulation of the Digtirax DT200 throttle that is implemented in a separate piece of software but is seamlessly integrated in the same graphical user interface.

For your convenience, in Annex II, I include a copy of relevant parts of the printed commercial WinLok 2.0 User Manual dated 1995, that provides explanation of this MultiDrive feature. Pages 95, 96 and 97 of the WinLok 2.0 User Manual provide unambiguous and definitive information that clearly estab-
ishes that the WinLok software has "...the capability of sending commands to one of a plurality of digital command stations...". Also enclosed is a copy of the box graphics used for international English language commercial sales of WinLok in the period 1995 onwards which clearly shows multiple user interfaces, which are all capable of sending commands via the MultiDrive technology to a plurality of digital command stations.

Annex III includes Sales Receipts and related VISA charge slips from DigisR Enterprises, the US distributor of WinLok software prior to 1997, for sale of WinLok 2.0 to two US commercial customers, dated 1/4/96 and 7/22/96. There is a mass of similar evidentiary records to additionally establish the commercial sales of WinLok 1.5, 2.0 etc. Please take steps to guard the confidentiality of the Credit Card account numbers disclosed, since this information is being provided in good faith to establish evidence of US commercial sales of WinLok 2.0 software.

Note that the current 2002 sales version, WinLok 2.1 Rev. D, only differs from the 1995 WinLok 2.0 version by bug fixes, and employs no new technologies relating to the MultiDrive capability. In fact, the MultiDrive driver shipped with the current release still carries the original 1994 copyright message and all test menus and dialogues are identical with the version shipped with WinLok 1.5.

It is believed that Katzer is in possession of a copy of WinLok 1.5 or 2.0 and a current evaluation copy of WinLok 2.1 can be conveniently downloaded from the Internet. If necessary, I can provide floppy disk distribution versions of the software so your technical expert, arbitrator or whoaever, can definitively verify the claimed presence and ability of the MultiDrive capability in all the cited versions of WinLok software.

With the foregoing clear and convincing evidence, I believe, it is not possible or reasonable to claim infringement of the claims of Katzer as you allege, since the accused WinLok software clearly and distinctly predate in commercial use, by greater than 12 months, the earliest filing and priority date of June 24th 1996, for US 6,065,406, and the other quoted Katzer patents.

The entire contents, techniques, methods and capability of these WinLok products are definitively established as publicly used prior art by, at latest, 1995, and accordingly, this subject matter cannot be claimed under statute 35 U.S.C. 102 (A) (b) by any US Patent with a filing date later than 12 months from the initial commercial shipment of the TannerSoft "MultiDrive" technology and software processes. These demonstrated dates clearly prevail over the earliest possible June 24th 1997 Katzer US interference window, in all cases.

I retain records of the software distribution disks dated back to at least 1995, along with materials shown in Annex I, II and III and other corroborative and evidentiary materials that provide clear and convincing evidence that establishes the existence of the TannerSoft "MultiDrive" feature as prior art that predates your client's claims by over 1 year. For PCT and International patents the 1 year window does not apply, which further degrades Katzer's assertion of possible infringement by limiting
earliest extant priority date to just June 24th 1998 anywhere else in the world except the Philippines. Documented prior art clearly prevails here and makes the claims unenforceable over this prior art.

Several other non-US software companies, for example Railroad & Co's "TrainController", have also introduced the capability to connect a plurality of digital command stations, that also were developed at least a year prior to June 24th 1998 and shipped commercially in Europe before this date. Some of these were spurred in part by the demonstrated capability of WinLok 1.5, and derivatives, and competitive pressures ensured these capabilities were emulated in a the marketplace very much earlier than June 24th 1998.

The Soft-Lok program by W. Schapals of Germany also demonstrated multiple digital command station capability in the early 1980's. In 1985 the MES software by Heinrich Maile of Spain, that also is capable of driving a plurality of digital command stations, was sold, and was also reviewed by the German railroad magazine MIBA. Annex IV includes a recent statement from Mr. Maile and a copy of promotional material.

This body of software products with these capabilities is additional prior art that also clearly supersedes the Katzer art, and is simply quoted here to establish the fact that there clearly exists, in addition to WinLok, a well known and large body of public usage and knowledge for using computer software to control a plurality of digital command stations and that this is clearly prior art over Katzer.

The Katzer specification for US Patent 6,065,406 clearly admits knowledge of a "software program" from DigiToys Systems of Lawrenceville, Georgia, (column 1 lines 42-50) which can only be "WinLok", since this is the only software that was sold by DigiToys at that time. In view of the well-defined and widely known features of the WinLok software, this raises concerns of defective disclosure under duties mandated by 37 C.F.R. 1.96. The failure of Katzer to fully disclose the widely known and extant body of prior art software methods and processes that permit a plurality of user interfaces to communicate by multiple methods to a plurality of digital command stations makes it problematic for him to point out and distinctly claim the subject matter which he considers his invention.

These facts, I believe, clearly establish non-infringement under 35 U.S.C. 273 (b) (1), and naturally follows directly from 35 U.S.C. 102 (A) (a) and (b) statutory concerns of the Katzer application(s). If you have any basis to contradict these facts, please contact me forthwith with the information.

Upon review of the "current investigations" of other possible infringements as stated in your letter, namely "claim 35 of US patent No. 6,267,081", "claim 39 of US patent No. 6,065,406" and "independent claims 10, 35, 57, 82, 104, 129, 151, 176, 198 and 223 of US patent No. 6,270,040", please note that it is almost certain that the Katzer art also is predated by demonstrated prior art from several software vendors in at least 1995, and earlier. The use of queues, synchronous and asynchronous communication mechanisms as well as message processing functions are standard programming
techniques within applications for the Windows operating system, therefore it is safe to assume that usage of these techniques was state of the art in Windows based Model Railroad software products prior to 1995, including WinLok 1.5.

It has been brought to my attention that a number of dealers who have sold my WinLok software as well as other Model Railroad software products claim to have been served with "cease and desist" letters by your firm as well. I therefore consider it as appropriate to present this factual and evidentiary information directly to affected parties, so they can make an informed decision on appropriate action. A decision about publishing this letter and supplementary documentation in part or entirely on our homepage and in selected, model railroad related Internet news groups is currently pending.

Yours sincerely,

[Signature]

DigitToys Systems
Dr. Hans R. Tanner, Developer of WinLok software

Cc: Model Railroad Software developers worldwide
 American Model Railroad software dealers
 File wrapper for US patents No. 6,065,046, No. 6,267,061, and No. 6,270,040

Annex I: Copies of 3 magazine reviews of WinLok 2.0
Annex II: WinLok 2.0 manual excerpts dated 1995, showing MultiDrive capability WinLok 2.0 cover showing multiple user interfaces
Annex III: Sales Receipts and Charge slips establishing US commercial sales
Annex IV: Statement of fact of origin of MES software (in German)
Annex I: Copies of 3 magazine reviews of WinLok 2.0
Computer für WinLok 2.0

1864-kompatibler PC mindestens
486-Prozessor, 8 MByte RAM
Festplatte mit mindestens
6 MB freier Kapazität,
Windows3.x oder Windows95,
RS232-Schnittstelle
VGA-Karte mit Auflösung
800 x 600 oder besser.
WinLok 2.0 Brings New Functionality to DCC

by Larry Puckett

Extends this year (March 1995) we took a look at WinLok Version 1.5 and promised an update as soon as the new version was released, so here it is. For those of you who missed the March issue, WinLok is a Windows-compatible program that allows you to interface your computer with many Digital Command Control (DCC) systems to control locomotives, switches and potentially, whole layouts. All of this can be accomplished using off-the-shelf components, giving you any level of control and automation you desire, without the building sophisticated interfaces and components such as Bruce Chubb’s CMRI system. Many of the features I described last March remain essentially the same so I’m going to concentrate on the two most important improvements, tracksets and support for the Digitrax LocoNet communication network.

Tracksets are the heart of WinLok’s ability to automate train operation on your layout. Basically, tracksets are programs that you write using a PASCAL-based programming language. Once a trackset is developed it can be assigned to a throttle for execution by the locomotive(s) assigned to that throttle. The automation includes control and monitoring of switches, block occupancy and locomotive speed and direction. More importantly, both automated track movements and manually controlled trains can be operated at the same time. This means that you could be operating a local switcher while a passenger and freight trains run past you on their tracksets.

Learning the trackset programming language is going to involve a steep learning curve unless you’re already familiar with PASCAL. Over 60 pages of the 182-page manual are dedicated to this subject. If you’re like me, the most useful section will be the two example tracksets that are provided. One example shows how to automate a push-pull commuter train while the other covers control of a train entering a hidden yard. I’ll be going over timetable programming in a few months once I have a chance to gain some familiarity with it. Naturally, for this type of automation the computer has to have some means of detecting whether the track ahead is occupied and which way switches are thrown. The version of the software I received supported Marklin serial sensor feedback modules and an upgrade that will be released with their PAR program that will allow advanced programming; a similar feature will be added to WinLok. At usual, time or the lack of it, is the reason all of these features didn’t make it into the latest release. Hansfled recently finished his doctorate, and it’s amazing he had time to add what he did.

WinLok 2.0 requires a 386 or better processor, serial interface and manual parallel port, Windows 3.x, a mouse and about 4 MB hard disk space. The setup utility does all the work for you, even creating the directory and program group. Documentation is extensive (182-page manual). A new tutorial covers you step-by-step through the basic setup and operations. The software is available for $119.95 and upgrades from Version 1.5 are $39.95 from Digit RR Enterprises, 10395 Seminole Blvd., PH, Seminole, FL 34678. They are also a Digitrax dealer and offer several economical package deals.

Now for the rating (1-5, 5 is best):

Documentation 4.0

User Friendliness 4.0

Technical 5.0

Application 4.0

Value 4.0

Level 2-5

That’s all for this session. Until next time, stay on the right track and don’t run out of steam. Send your comments, questions and programs to: Larry Puckett, 5618 Dublin Dr., Manassas, VA 22110. For those of you on CompuServe my user id is 71064,22 — feel free to leave me a message. If you submit a public domain or shareware program for review in this column please indicate whether or not you are willing to provide copies for interested readers and the conditions for that exchange.
WinLok 1.5 Brings Your Computer Into the Train Room

by Larry Puckett

In the January column I promised that this month I would give you an introduction to the future of your computer, to run your model railroad using off-the-shelf components. In the last few months there have been a number of ad in the hobby magazines for computerized layout control systems that are based on conventional cab-type blocking with routing being handled by the computer. These systems use conventional 12V DC power locomotives and some type of "memory" to literalize memorize your layout and route trains over it. What these systems fail to offer is the flexibility of a command control system like the new NMRA DCC. At present I am only aware of two computer systems that interface with DCC systems - Engine Commander from Kansas and WinLok from ThreeSoft.

First, let's take a look at WinLok's capabilities, then discuss its shortcomings and finally guess for a moment into the crystal ball for a look at what enhancements the near future will bring. WinLok is designed to provide two basic functions: 1) layout control through Digital Command Control (DCC) stationary sensors and decoders, and 2) locomotive control through mobile decoders. First I want to talk about using WinLok to control locomotives, then I'll describe the layout control functions and finally get to the crystal ball guessing.

Setting WinLok up is really straightforward — it's self installing. Data entry follows the usual Windows drop-down menu and point-and-click mouse entry. Connecting the computer to the Digitrax DLX booster LoopNet controller was equally easy. I made up my own controller cable following the instructions provided and materials purchased from Radio Shack. If you're reluctant to try your own electronics skills, pre-built cables are available for about what the parts would run you. I did run into trouble getting the decoder out of 14-speed mode, but finally I went through the setup steps EXACTLY as the manual says and it worked. All the files read and the manual! Speed control was just as smooth with WinLok as I have gotten with the Digitrax DT200. I should have a question concerning the pin assignments on the controller cable that was answered within one day by the owner of Digitrax via a ComServe message.

To keep this simple, let me say that locomotive control is basically the same as I've described in previous discussions of the Digitrax DCC system. The big difference here is that your computer is used to generate the DCC signal instead of the DT200 or the DB100. Within WinLok a locomotive controller is set up for each locomotive/decoder address. The controller is an on-screen representation of a hand-held throttle containing a slider bar to control speed, a digital readout that displays an approximation of locomotive speed, and control buttons for stop, direction, and functions. Each controller can be set up to control up to three decoder-equipped locomotives in MU tandems. Programming differs slightly depending on the type of decoders you use (Lenn, Marklin, Arnold, Trax, ZIMO or Digitrax). In the case of the Digitrax decoders, you can select 14-, 26-, or 138-step-speed mode, acceleration and deceleration rates and the initial, midpoint and maximum voltage settings. Different drivers are provided for all the decoder types, along with a MultiView that can be used to simultaneously control all of the different types. Point-and-click mouse data entry makes programming a lot easier than the usual method of trying to hold down two buttons on the Digitrax 200 or 100. Also, because all configurations are stored on your hard disk, you never have to re-enter locomotive assignments.

Layout control is accomplished using stationary decoders to throw turnout from the computer and sensor modules that monitor block occupancy. All of the decoder (both stationary and mobile) addresses and information, along with locomotive information are entered into their respective databases. The information in the database is used to set up switches that look like the old guards of Atlas turnouts control. The advantage of these is that up to 16 switches can be controlled by clicking on its number on the switchboard. The memory board allows you to combine control of several switch machines simultaneously into preset routes that can be set in a manner similar to using a double-matrix control system.

Another neat feature of WinLok is the ability to build a schematic of the layout or section of track to be controlled, along with switches, signals and routes. In the same way as the mouse cursor can be used to activate switches and select routes by clicking on them or the switchboards I described earlier. Basically the computer display can replace the normal layout control panel and you or a dispatcher can control the layout from the computer. The really important thing to realize here is that any of these switches and sensors are accessed through the serial (or parallel) port replacing all those wires that normally have to be run between the switch and sensor modules and a CTC board.

There are a few limitations in WinLok 1.5. First, all controllers are through the computer — that means that walk-around control is out. This is reflective of the European heritage of WinLok where everything is normally run from a central control panel, much like was done in this country 20+ years ago. It also effectively limits you to a single operator since the mouse cursor or keyboard is used for control. Another holdover from the European version is the German language headings in the help file. I've been assured that these will be changed in the version 2.0 release. With respect to decoder functions, the 28-step-speed programmability is not supported. Otherwise, the program was easy to use, and although it could use some editing and grammatical tidying up, the manual was better than many I have seen. To make it easier to get an idea of how it all works, demo versions of all the functions are provided along with a tutorial explanation.

Now let's look into the future a bit. Version 2.0 of WinLok promises to alleviate the limitations I just mentioned. It will allow Digitrax users to communicate with the LoopNet system with their locomotive and stationary decoders. Most importantly, it will allow us to use the DT200 or DT22 "fuddy duddy" controllers with the computer giving us a complete walk-around system. The computer will be able to sense the position of tumouts and control them, and a new level of programming will allow you to automate train routes. Once version 2.0 and the new Digitrax LoopNet driver and stationary decoders are available, I'll do a complete test of the combined system to automate a portion of a layout. In anticipation of receiving letters from fans and manufacturers of other types of DCC equipment (Lenn, Marklin, Arnold, Trax, ZIMO, System One) I would like to say at this point, I realize that we have...
been giving Digitrax a lot of attention, not necessarily because it is the best or cheapest system available, but because they have been very cooperative in providing the materials necessary to do those tests. I would be more than willing to evaluate other manufacturers' systems and compatibility with programs like WinLok.

Several folks I have talked with about the capabilities of WinLok and DCC systems question the need or desirability of automating layout controls. My answer to that is, the flexibility of the system will allow us to automate as much or as little of our layout operations as we desire, while making it a lot easier and cheaper through standardization. For example, the simplest use of automation might be to control hidden staging yards, whereas it could get as complex as automating a display layout. For operations, the computer could run the passengers and through freight, while you and your operators could run the locals or any combination you desire. No matter what, you'll still be in control — having the trackouts connected to the computer will not eliminate local control of a fascia-mounted push-button switch, or automation could be limited just to mainline turnouts.

Basic system requirements are a 386 or better PC running Windows 3.0 or 3.1, mouse, 2.8 Mbytes of disk space, and 2 Mbytes RAM. WinLok retails for $139.95 and a demo disk is available for $30 which can be credited toward the purchase of the full version. A combination package including the full version of WinLok, a Digitrax D800 booster, two decoders and instructions to build the Locotune-KS232 cable is priced at $329.90. For those of you on CompuServe the manual can be downloaded from the Travnet library — look for the WINLOK.ZIP file. For a complete price list with the most up-to-date price information contact Digitex RR Enterprises, 10975 Seminole Blvd. #E, Seminole, FL 33778 or you may call them at R13-397-5110.

Now for the rating (1-5, 5 is best):
Documentation 4
User Friendly 4.5
Technical 4.5
Application 4
Value 4
Level 2.5

That's all for this session. Until next time, stay on the right track and don't run out of steam. Send your comments, questions, and programs to: Larry Pickett, 9618 Dublin Dr., Manassas, VA 22110. For those of you on CompuServe my user id is J16064.22 — feel free to leave me a message. If you submit a public domain or shareware program for review in this column please indicate whether or not you are willing to provide copies for interested readers and the conditions for that exchange.

Back Issues Available

MODEL RAILROADING

Call Today to Complete Your Collection
1-800-928-0973
Annex I: WinLok 2.0 manual excerpts dated 1995, showing MultiDrive capability. WinLok 2.0 cover showing multiple user interfaces.
Figure A.24: Driver Data Input

Setup Driver Data

1. Insert the CD into the CD-ROM drive.
2. Open the CD-ROM drive and find the directory labeled "Drivers" or "Driver."
3. Select the appropriate driver for your system and install it according to the instructions provided.

The driver should now be installed and ready to use. Check the documentation for any additional setup instructions.

A.2.7 Test Driver

When the Test Driver is tested, the operation of the system should be verified. If errors are encountered, refer to the driver's documentation or contact the manufacturer for assistance.
WinLok 2.0 © by TannerSoft
Digital Command Control Software for Windows

System requirements.
WinLok 2.0 requires an IBM compatible PC with the following minimum configuration:

And for your Model Railroad:
One of the following Digital Command Control Systems:

Digitrax
LENZ
Arnold
NMRA DCC
märklin
TrixSelectrix
Zimo

The New Dimension in Model Railroading

Contains one 3.5" Floppy and Documentation
Introduction:

The software for the various models and manufacturers allows realistic operation of a control console with switches, and control of all switches, routes and individually created CTC panels. The software can run in parallel with on-screen trainsets, simulated trains, and an interface to the parallel DIGITRAX LocoNet. This version supports the following digital command systems:

From Serial Port:
- Arnold Digital
- Märklin Digital
- Märklin 801
- support of 4 functions: crane, turnout, lamp, etc.
- ZIMO
- Trix-Selectrix
- DirectDrive (supporting the NMRA DCC digital packet format. NMRA F7 or PB Booster)

From Parallel Port:

MULTIDRIVE

remote control and operation. Do it yourself System.

Wolfgang Horn of Moosburg, Elektronik.

Operate any of the above Digital.

Command in parallel. Requires one RS232 Serial Port

appropriate booster and/or Command

system expansion system.
Annex III: Sales Receipts and Charge slips establishing US commercial sales
Sales Receipt

SOLD TO

Charlie Barber
2064 Peachtree Industrial Court
Suite 407
Chamblee, GA 30341

SHIP TO

Charlie Barber
2064 Peachtree Industrial Court
Suite 407
Chamblee, GA 30341

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>RATE</th>
<th>AMOUNT</th>
</tr>
</thead>
</table>
| WLK20F | WinLok 2.0 Full Version
Serial # 1739/ | 1 | 119.95| 119.95 |
| S & H | Freight, Shipping & Handling | | 5.00 | 5.00 |

DATE
1/4/06

SALE NO.
32023
Sales Receipt

DATE
8/22/96

SALE NO.
32061

SOLD TO
LBC Model Trains
5544 Main Street
Williamsville, N.Y. 14221

SHIP TO
LBC Model Trains
5544 Main Street
Williamsville, N.Y. 14221

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>RATE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLK20/QLR</td>
<td>WinLock 2.0 Retail Package</td>
<td>1</td>
<td>69.95</td>
<td>69.95</td>
</tr>
<tr>
<td>S & H</td>
<td>Freight, Shipping & Handling</td>
<td></td>
<td>5.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>
Annex IV: Statement of fact of origin of MES software (in German)
Modellbahnaussteuerung MES - Simultane Steuerung mehrerer Digitalsysteme

Als Autor der Computer Modellbahnaussteuerung MES (Modellbahn-Elektronik-Steuerungen) bestätige ich folgendes:

1. MES ist ein Software-Programm zur Steuerung von Modellbahnen, das auf einem Personal-Computer ausgeführt wird.
2. MES wurde 1985 entwickelt und beschrieben.
3. Das grundsätzliche Funktionsprinzip und die Architektur wurden von 1985 bis heute beibehalten.
5. MES wird mit der unter 3. genannten Fähigkeit seit 1989 für jeden erhältlich u.a. in Deutschland, Schweiz und Spanien verkauft.
7. Der MEGA Verlag hat ein Teil der beschriebenen Vorführung auf dem Gebiet der Modellbahnen.