Jacobsen
Supplemental
Declaration
Exhibit E
Model Railroad NEWS

Aristo brings LIVE STEAM to the Garden!

New Series!

Project DCC moves modelers into 21st century
all major dimensions and spotting features.

The wheel sets on both cars were correctly gauged, when measured with the NMRA Mark IV standards gage. These cars use one-piece wheels and axles, molded in brown plastic. They negotiated the popular brands of Code 80 track, but had trouble on Atlas Code 55 track; the flanges tended to chatter when rounding curves. This problem was not observed with Code 55 track from Micro Engineering and Peco.

The AccuMate coupler and trip pin height matched the Micro-Trains coupler height gauge perfectly making mixed operations between Atlas N and Micro-Trains couplers possible.

NMRA Recommended Practice RP-20.1 covering car weight specifies that N-scale cars should weigh ½ oz. + 0.15 oz. per inch of body length. Both Atlas cars were a light: the Thrall car, which should weigh 1.1 oz., weighed in at 1.0 oz. The ACF car tipped the scales at 1.0 oz. when the NMRA RP says it should weigh 1.2 oz.

Atlas does not include an exploded parts view or parts listing with either series. According to Atlas customer support, rolling stock comes with a 90-day warranty against manufacturing defects.

Closing Thoughts

The new additions to Atlas’ Trainman Series and Master Line Series are fine-running and good looking. Both authentically reproduce their prototypes, albeit to differing levels of detail. Whether you have a small layout, a basement empire, or belong to a club, the Atlas Trainman Series allows your rolling stock roster to grow quickly without wiping out your hobby budget. For those that like to showcase their favorite train, I suspect you’ll opt for the highly detailed Atlas Master Line Series. The wealth of detail on these cars makes it easy to fill your yards with prototypes in miniature.
Integrating Operation and Automation — Part 1, Project Introduction — By Phil Scandura

My fascination with command control began in 1971, after reading about General Electric’s ASTRAC system in the Complete Book of Model Railroading by David Sutton (published by Castle Books in 1964). ASTRAC stood for Automatic Simultaneous Train Control, and could control up to five trains at one time by sending simple radio signals over the rails to receivers installed in the locomotives. Although the ASTRAC sys-

The first commercially available command control system, General Electric’s ASTRAC system was introduced in 1963. ASTRAC stood for Automatic Simultaneous Train Control, and could control up to five trains on the layout at one time. Shown here are the K-2 control unit and a “micro” receiver intended for HO scale and larger. Although N scale was not around yet, the locomotive is included here as a size reference. Considered to be a system ahead of its time, ASTRAC would never see true commercial success and was taken off the market only a few years later. Believe it or not, there are still users of this system today.

ZIMO STARTN for N scale. The Digitrax and Lenz sets have a large following in the US, the ZIMO set is more commonly found in Europe, especially in Germany.
In *Model Railroad News*’ Thinking of DCC column (see February and March 2006), I addressed various technical considerations and the topic of personal readiness. I closed with the suggestion that while DCC isn't for everyone, it's worth giving it a try. I encouraged readers to visit a hobby shop, club, or friend's layout that uses DCC, get a quick lesson on how to use it and experience the pleasure of running a train without worrying about flipping block switches or overrunning blocks.

Project DCC Goals

In my opinion, individual locomotive control is one of the great joys of DCC. Using the handheld controller, you can command locomotive speed, direction, lights, and sounds as your train progresses around the layout. But DCC offers more than just locomotive control, it offers numerous operational capabilities. With that in mind, Project DCC was created with the purpose of accomplishing the following goals:

- To introduce modelers to the operational capabilities of DCC, beyond the individual control of locomotives
- To provide modelers with the knowledge and confidence to implement as many operational features as they desire
- To demonstrate the ability to create a full-featured DCC layout without the need for advanced technical skills
- To demonstrate systems and products from various manufacturers, exploring the ability to mix and match them on a real layout.

Multi-Part Series

In the next twelve months of *Model Railroad News*, Project DCC will lead you through a phased approach to creating a DCC layout. Beginning with basic DCC features and building upon them through a series of logical additions, you'll learn about wireless control, train detection, signaling, turnout control, automated routing, and computer control. Commercially available “off-the-shelf” DCC products have been used, maximizing the use of plug-and-play products and attempting to lower the “rocket science” factor. While the actual layout will be built in N scale, the techniques introduced in Project DCC are completely applicable to the larger scales (as well as Z scale, once small enough decoders are introduced). So while you're reading Project DCC, be sure to substitute your favorite modeling scale whenever you see ‘N’!
Here's a brief look at the topics coming in the Project DCC series:

- **Part 1, Introduction to DCC.**
 Before we dive into the details of Project DCC, it is important to understand the basics of DCC. Without getting too technical, we'll present a brief overview of how DCC works, as well as the history of DCC.

- **Part 3, DCC System Familiarization.**
 Equipped with the basics of DCC, we'll explore the features and capabilities of the three DCC systems used in Project DCC, including the use of wireless throttles and a quick look at decoder installation. The intent is to provide you with a basic understanding and moderate comfort level with DCC systems.

- **Part 4, Layout Configuration.**
 Here we'll review the track plan used for Project DCC, including a brief primer on signaling that explains the rationale used to choose detection blocks. While a somewhat simple layout, it includes track features commonly found on most layouts such as crossovers, passing tracks, and stub sidings.

- **Part 5, Track Assembly, Wiring & Block Detection.**
 Now we get down to business, assembling the track and performing basic wiring in support of power distribution and block detection. When completed you'll be able to run trains and trigger block detectors in preparation for signaling that comes later in the series.

- **Part 6, Turnout Control Wiring.**
 We'll install the wiring needed to support remote control of turnouts using accessory decoders. Doing so provides the ability to interlock turnouts for route control, as well as automated turnout control via the computer (more on that later in the series). When completed you'll be able to run trains, trigger block detectors, and control turnouts.

- **Part 7, Signal System Wiring.**
 Using the detector blocks already installed, we'll wired up trackside signals, using different methods supported by our DCC systems. When completed you'll be able to run trains, trigger the signal system, and control turnouts.

- **Part 8, Integrating a Grade Crossing.**
 Adding grade crossing signals require the addition of detection blocks within the existing signal blocks. To do so requires special wiring considerations, as well as DCC system configuration changes that we'll explore in detail.

- **Part 9, Computer Control Introduction & Familiarization.**
 Here we take a break from layout construction to explain the use of computer control and how it relates to Project DCC. We'll perform some simple demonstrations to help you with a basic understanding and moderate comfort level with computer control.

- **Part 10, Manual Computer Control.**
 Returning to the layout, we'll perform manual operation of our layout aided by various computer features.
Case 3:06-cv-01905-JSW Document 266-6 Filed 11/21/2008 Page 7 of 7

- Part 11, Automated Computer Control

Based on the manual control concepts already explored, we take the layout to the next logical step by implementing fully automated (hands-off) operation of our layout using the computer.

- Part 12, Project DCC Review. In our final installment we’ll review the highs, lows, and lessons learned during the Project DCC series.

Remember, you decide how much of Project DCC you’re willing to tackle; no one says you have to go all the way. Do it as much as you’re comfortable with right now, but keep in mind that you may decide to add more features later, so plan for them now!

Life Before DCC

I would be remiss if I neglected to mention that layout automation has been around long before the advent of DCC. There are various layouts, both private and public (such as in museums), that have been automated using traditional DC control systems, relay logic, and in some instances computers. These layouts are major achievements in their own right, and Model Railroad News recognizes and applauds the efforts of their builders and maintainers. For those die-hard DC fans, it is not my intention to convert you from DC to DCC; rather it is my hope that Project DCC will expose you to alternative ways of layout automation, using the latest in DCC technology.

Numerous Vendors and Products

The success of Project DCC is due to the wonderful support provided by the DCC and N-scale vendor community, providing products and services for use in the project. Model Railroad News used a Request for Proposal (RFP) process in which the detailed project description and specific requirements for each feature were provided to those vendors interested in participating. In turn they responded by describing how their specific products and services fulfilled the desired functionality and requirements listed in the RFP. Model Railroad News then scored each vendor’s response to determine which products best fit Project DCC’s requirements and selected those to be included in the project. Vendor participation was invited in the areas of track, DCC systems, decoders & accessories, signal electronics, signal heads, locomotives, and layout automation software. In all, more than 30 vendors were invited to participate, that number was then winnowed down to the companies listed below.

Track
Atlas Model Railroad Co.
Kato USA

DCC Systems, Decoders & Accessories
Digilax
Lenz
RR-CirKits
Train Control Systems
ZIMO

Signal Electronics
Atlas Model Railroad Co.
Ballast Electronics
Digilax
Lenz
Logic Rail Technologies
ZIMO

Signal Heads
Atlas Model Railroad Co.
Digilax
NJ International

Locomotives
Atlas Model Railroad Co.
Kato USA

Layout Automation Software
JMRI Freeware
KAM Industries
Railroad & Co.
ZIMO SF

Coming Next Month

This month I’ve given you an overview of Project DCC and a taste of what to expect in the months ahead. I hope you’ll join me next month as we dive into “Introduction to DCC” where you’ll learn the basics of how DCC works and how DCC came about. See you then!

Kadee Cars

FREIGHT CAR SCHEDULE* PRE-ORDER TODAY
LIMITED QUANTITIES AVAILABLE

June - 2008
#4127 ATSF #31257 - Chief - 40' Boxcar Red Boxcar $31.95
#4074 NYC #170749 - Cigar Band - 40' Century Green Boxcar $33.95
#6639 USR6 #18332 - Gray Covered Hopper $42.95
#8690 ABG #18336 - Gray Covered Hopper $42.95

July - 2008
#4070 MTL #35020 - 40' Dark Tuscan Boxcar $32.95
#913 RUT 3 Pack #4916, #4910, #4920 - 40' Green Boxcars $34.95
#6314 D&B #19161 - 10' door Hydrocushion - 50' Yellow Boxcar $34.95
#8030 SLSF #1009 - 50' Gray Covered Hopper $40.95

August - 2008
#5282 UP - 40' Red Oxide Boxcar $31.95
#6021 L&N - 50' Blue Boxcar $32.95
#9329 CRR - Black Covered Hopper $41.95

NEW PAINT SCHEMES / MULTI PACKS - 2008
#4314 UP 4 Pack #5280, #5283, #5284, #5285 - 40' Red Oxide Boxcars $122.95
#6315 ACL - 8' door Hydrocushion - 50' Black Boxcar $34.95
#6316 ACL - 8' door Hydrocushion - 50' Boxcar $34.95
#6318 RI - 10' door Hydrocushion - 50' Boxcar Red Boxcar $34.95
#8609 KDC #009 - 2008 Christmas Car - 40' Red Boxcar $38.95

Limited quantities available after all Standing & Pre-Orders are filled. To ensure you will receive Kadee® Freight Cars you must be on our Standing Order program or Pre-Order by Phone (410) 849-3698 or Fax (410) 849-4019 or Online www.kadee.com. Standing orders don’t automatically receive Future issues of Kadee® Catalogs or Multi Packs of Kadee® Freight Cars. Limited supplies of each Multi Pack are subject to change without notice.

©2008 Kadee® Quality Products Co. • 1-877-337-8847 • www.kadee.com • Fax (410) 849-3698

The All-Scale News Monthly — Model Railroad News — June 2008

Warren Tryk
Graphic Design/ Desktop Publishing
Advising Design
Brochures and Catalogs
35 years experience
Several of the ads in this publication represent my work
360-786-5724
Email: wtryk@aol.com

The All-Scale News Monthly — Model Railroad News — June 2008