Exhibit E - Part 4
Appendix III A

Recommended DCC Command Stations

<table>
<thead>
<tr>
<th>Command Station</th>
<th>Recommended</th>
<th>Will Support Service Mode w/ Quantum</th>
<th>Comments(^{138})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCE ™</td>
<td>Yes</td>
<td>Yes (See Comments)</td>
<td>Horn and Bell buttons are available but bell button assigned to F3 (see QSI CV 37 example). Newer NCE apparently support programming track but older command stations do not. Programming on the main is easy and straightforward. NCE currently only supports F0-F8 Function Keys.</td>
</tr>
<tr>
<td>Wangrow ™</td>
<td>Yes</td>
<td>No</td>
<td>Horn and Bell buttons are available but bell button assigned to F3 (see QSI CV 37 example). No Service Mode but programming on the main is easy and straightforward.</td>
</tr>
<tr>
<td>Digitrax ™</td>
<td>Yes</td>
<td>Yes</td>
<td>F0 = Lights, F1 = Bell, F2 = Horn. DT300 will operate in Service mode but will not read back value. Long address is automated with the DT300 and DT400 throttles, which properly writes CVs 16, 17, and 29. Click to the 4-digit mode, set address, and answer yes to the enable 4 digit address prompt. It also automatically resets CV29 if you return to 2-digit address. An exception is the obsolete DT100 throttle, which will only program Quantum in Ops Mode. Use QSI CV 56.129 to program either CV 1 or CV 17/18. Note that the DT100 only programs in hex, except for addresses, which are in decimal. This makes it easy to enter address in Ops mode. We have qualified the following Digitrax systems with Quantum (all support F0-F12): Super Chief with DT400 Zephyr with DT400 DCS100 with DT400 Chief with DT400See Digitrax for more information on QSI compatibility at www.digitrax.com.</td>
</tr>
<tr>
<td>MRC ™</td>
<td>Yes</td>
<td>No</td>
<td>MRC does not provide a separate programming function. All programming is done in Ops mode with no acknowledgement feedback. A resistor is included to limit current for a Programming Track, which may limit the current below the allowable level for Quantum programming. For the Quantum system, the resistor may be left out. For other decoders, the user should follow the MRC instructions.</td>
</tr>
<tr>
<td>Lenz ™ LZ100, LV200, L2V100</td>
<td>Yes</td>
<td>Yes (See Comments)</td>
<td>F0 = Lights, F1 = Bell, F2 = Horn. Lenz will program in Service mode providing that a suitable resistor is added in series to the Programming Track (LV100 requires 20 ohms and LV200 requires 10 ohms). Note that CV 1, 17 and 18 cannot be programmed on the main in the standard way (see QSI CV 56.29 for alternative way to program ID numbers). Newer Lenz does support F0-F12 Function Keys.</td>
</tr>
<tr>
<td>Atlas ™</td>
<td>Yes</td>
<td>Yes (See Comments)</td>
<td>Early models of the Atlas command station had some problems with programming. Reports from Atlas on their recent versions indicate no problems. Limited number of function keys available.</td>
</tr>
<tr>
<td>CVP ™</td>
<td>Yes</td>
<td>Yes</td>
<td>EZ DCC. Works with wireless hand held throttle as well as standard command station.</td>
</tr>
<tr>
<td>Zimo ™</td>
<td>Yes</td>
<td>Yes</td>
<td>All products work with Quantum.</td>
</tr>
</tbody>
</table>

\(^{138}\) Many comments and opinions regarding operation with different command stations are the result of user's letters to QSI or comments on various railroad web forums. QSI is not responsible for the accuracy of these comments, which are included here only as a starting point for the customer to verify to his own satisfaction the compatibility of these products for use with the QSI Quantum System.
Appendix III B

Programming a Long Address on Digitrax

Select the Loco's Short Address (Usually 3)
- Press "Loco" then "3" then "Enter".

Program "On the main" the new Long Address.
- Press "PROG" until "Po" and the Loco’s address is shown on the LCD.
- Press right turn knob down until it reads "ad4"
- Type in desired four digit address and press "Enter"
- Once the long address is programmed, you must tell the engine to use it.

Enable the Long Address.
- While still in "Program on the Main", press the right turn knob until it says "ad2"
- Scroll with left knob until you get to CV29, then Enter "34" and press "Enter".
- Press "Exit" to leave program mode.

Select Loco with the new Long Address.
- Press "LOCO" and enter new long address to run engine.

Returning to the Short Address

Select the Loco's Long Address (The value you programmed above)
- Press "Loco" then the Long Address then "Enter".

Program "On the main" to Enable the Short Address.
- Press "PROG" until "Po" and the Loco’s address is shown on the LCD.
- Scroll with left knob until you get to CV29, then Enter "2" and press "Enter"
- Press "Exit" to leave program mode.

Select Loco with the Short Address.
- Press "LOCO" and enter Short Address to run engine.
Appendix III C
Programming a Long Address on North Coast Engineering (NCE)

Starting with the engine short address, 003

1. Press "Program": Display reads "Program on Main"
2. Press "Enter:
3. Display shows current 003 I.D. on the display…. Press "Enter"
4. Press #2 for "CV"
5. Enter 17………………………………………………………… Press "Enter"
6. Enter desired "Long Address" i.e. 5200......... Press "Enter"
7. Display reads "Activate this Address?"…………. Press 1 for Yes
8. Display reads "Enter CV Num?"…………………. Press "Enter"

You are now out of program mode and have completed "the Long Address" sequence.
Appendix IV

Troubleshooting Operations Mode

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause and Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>My headlight does not come on when I start my engine out but mysteriously comes on whenever I blow the horn or turn on the bell. Also, if I try to turn on the headlight, it requires two pressings for the F0 or FL key.</td>
<td>Pressing the horn or toggling the bell will cause your command station to send out a Function Group One command, which contains the lighting information. Not all command stations automatically send this information unless FL, F1, F2, F3 or F4 is pressed. Regarding turning on the lighting with the F0 key, the state for the light may already be on at the base station but not sent. When you press the F0 key, it toggles the lights to be off and sends that command. It takes a second press of the F0 key to send another command to turn on the light.</td>
</tr>
<tr>
<td>My brakes, bell, air release, or other sounds comes on sometimes for no apparent reason while operating my locomotive.</td>
<td>See above. Some functions may already be turned on but not sent. When you request any function, the entire function group that contains that function will be sent and this may trigger other features already enabled within that group. Hence, you might request the light be turned on and hear squealing brakes or the bell turn on or off. If your base station display shows the toggled condition for each of the function keys, you can determine which feature will turn or off when a Function Group One or a Function Group Two is sent.</td>
</tr>
<tr>
<td>My engine makes no sounds except an air release when power is applied and will not operate.</td>
<td>You have your engine in Shut Down. Double press the F6 Start-Up key to start your locomotive.</td>
</tr>
<tr>
<td>My engine runs but makes no sounds.</td>
<td>Your have Mute on or have turned down your System Volume or individual feature sound volumes. You may have a broken wire to the speakers or a faulty speaker.</td>
</tr>
<tr>
<td>When I turn up my throttle to higher values, the engine does not speed up but instead, the directional lighting comes on.</td>
<td>Your engine is set for 14 speed steps but your base station is set for 28 or 128.</td>
</tr>
<tr>
<td>When I turn on my lighting system with the F0 Key, the engine speeds up at low throttle settings.</td>
<td>Your engine is set for 28 or 128 speed steps but your base station is set for 14.</td>
</tr>
<tr>
<td>Sometimes my locomotive slows down when I blow the whistle or horn, particularly at high volume levels.</td>
<td>The Quantum Sound system takes additional power to blow the whistle or horn and this loads your power pack. This can lower the voltage on the track and your engine will slow down. Purchase a power pack with good line regulation to prevent this problem.</td>
</tr>
<tr>
<td>In Speed Control Mode, there are no speed changes above a certain throttle settings.</td>
<td>The top speed of your engine is dependent on the gear ratio, load on the engine and the available voltage applied to the track. Asking the engine to go faster results in no change. (See CV 56.10 for Scale Factor to change throttle range).</td>
</tr>
<tr>
<td>Under speed control, I do not get 1 scale mile per hour (smph); I get a larger number about 5 to 10 smph.</td>
<td>Check you speed step setting on your base station. To get 1 smph you need to be in 128 speed steps.</td>
</tr>
<tr>
<td>In Throttle Control Mode, there are no speed changes above a certain throttle settings.</td>
<td>Try a different speed curve or define you own to provide full range of throttle motion.</td>
</tr>
<tr>
<td>My engine operates with no problem in DCC, but does not operate at all under Analog control.</td>
<td>Make sure Analog operation is enabled. CV29 bit 2 must be set to 1.</td>
</tr>
<tr>
<td>My Lionel Gas Turbine will not operate over 25 smph under RTC or Speed Control.</td>
<td>This is correct for diesel operation. This is an internal limit on top speed when the locomotive is under diesel operation. The prototype would not travel over 25 mph under diesel power. Switch to turbine operation to gain higher speeds.</td>
</tr>
</tbody>
</table>
Service Mode Operation

<table>
<thead>
<tr>
<th>My Quantum equipped engine will not program in Service Mode with my command station.</th>
<th>Some command stations do not provide sufficient current to power the Quantum system. Use Ops Mode programming. You can also purchase from Tony's Train Exchange®138, a simple, inexpensive power booster (PowerPak™ by DCC Specialties) that will allow you to program on the program track with any DCC command station.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occasionally, when programming CV, the reported value is off by one digit.</td>
<td>This is a timing issue with some command stations. Either program in Ops Mode or considering using a PowerPak.</td>
</tr>
<tr>
<td>When I try to do a complete reset of all CV's using CV 56.128.255 in Program Mode, not all of the CV’s reset to factory values.</td>
<td>Resetting all CV’s takes considerable time. Some command stations only allow a fixed short amount time to power the programming track after a command is sent. When you ask for a complete reset, not all of the CV's will be reset if the power shuts down part way through the procedure. We recommend doing a full reset in Ops mode. Or you can do individual reset operations such as 'all NMRA CV reset', and 'all QSI CV reset', etc. until you have all groups of CV's reset to factory defaults.</td>
</tr>
</tbody>
</table>

138 Tony's Train Exchange; 1-800-978-3427; info@ttx-dcc.com.

Quantum DCC Reference Manual v.3.0 152 16 February 2005
Appendix IVa

Using the Quantum Hardware Reset and Volume Controls:

Quantum software can be programmed by the operator to reset the system to factory defaults. As a safety precaution, Quantum also has a backup hardware method to do a system reset. Either method can be used to reset the locomotive to original factory settings. In case your Quantum Sound and Train Control System misbehaves and simply turning the power off from 5 to 15 seconds does not return it to normal operation, you can reset your engine using CV 56.128 or you can use the hardware Reset Jumper found on earlier Quantum Systems or the Magnetic Wand to activate a reed switch included on more modern Quantum Systems.

Quantum system volume can also be adjusted using software by programming CV 51.0 or by a hardware volume adjustment. Earlier Quantum systems used a potentiometer volume control and later models use a magnetic wand.

Reset Jumper Models

Both early Quantum steam and diesel used jumper and volume potentiometer to control reset and sound volume. The diagram below shows a Quantum circuit board used in some Steam Locomotive tenders. The jumper and volume potentiometer is located on the bottom board as shown in the diagram below.

To Reset the Locomotive:

- Turn off the main track power.
- For Steam Engines, remove the tender body or water filler hatch to reveal the circuit board. If it is a plastic tender, there are no screws; it is a press fit to the chassis. Die cast tenders will have retaining screws under the chassis. Most diesels will have a removable access panel over the Quantum circuit board on the roof. The location of the access panel will be shown in the Steam or Diesel Model Specification sheet that was included with your locomotive instructions.
- To reset the Quantum system to its default values, locate the black "clearing" jumper (see below) and remove by pulling it up.
- Reapply main track power, the horn and/or bell will sound after a few seconds.
- Turn main track power off and reinstall jumper, and tender cab or access panel. The locomotive has now been returned to original factory settings including all Analog and DCC settings.

Note: Do not try to perform the jumper reset operation on the Program Track under Service Mode power. Always perform this operation under full power.
To Adjust the Volume Using the Potentiometer:

- Locate the Manual Volume Control under the access panel on the roof of your diesel locomotive or under the water hatch on Steam Locomotive tender as shown in the Diesel Model Specification sheet that was included with your instructions.
- Turn on main track power. You may want to turn on and leave on some of the significant sound effects such as whistle/horn and bell.
- Use a small screwdriver to turn the volume clockwise to increase volume or turn it counterclockwise to decrease the volume.
- Replace the access panel or water hatch cover.

Note: Volume can also be adjusted digitally using the programming methods described in the programming sections of this manual.

Magnetic Wand Models

Modern Quantum steam and diesel models use a glass enclosed reed switch to reset the Quantum System or adjust the volume. The reed switch will close its contacts when the magnet supplied with your locomotive is placed in close proximity. The advantage of this method of adjusting your engine’s volume or resetting it to factory defaults is that you do not need an access panel to gain access to the controls. Also the wand does not need to touch the body; it can be held a reasonable distance from the roof area to prevent possibly marring the painted surface.

![Image of reed switch and speaker](Quantum small diesel board with a reed switch mounted in a narrow-body diesel)
To Reset the Locomotive:

- Locate the reed switch area as shown in the *Diesel or Steam Model Specifications* sheet that was included with your model.
- Turn off the track power.
- Place the Magnetic Wand over the reed switch area and re-apply track power and leave the wand there until you hear the word "reset". Remove the magnetic wand, your engine is now reset.

The locomotive has now been returned to original factory defaults including all DCC and Analog values. **Note:** Do not try to perform this reset operation on the Program Track under Service Mode power. Always perform this operation under full power.

To Adjust the Volume Using the Magnetic Wand:

- Locate the reed switch area on the locomotive's roof as shown in the *Diesel or Steam Model Specifications* sheet that was included with your model.
- Power up engine and leave in Neutral.
- Place the enclosed Magnetic Wand over this reed switch area on the roof of the locomotive's roof perpendicular to the track and wait as you hear the volume increase or decrease in incremental amounts as the Horn hoots about every second. Move the wand away and again place it over the reed area to change the direction (louder or softer) of the volume change. Remove the wand when you reach the desired volume level.
Appendix V

Different types of Feature Operation from Function Commands

QSI will often use the same function to control different effects depending on whether the system is in Neutral or a Motive state (Forward or Reverse). This allows us to increase the number of features available to DCC functions over the NMRA specified maximum of 14 (FL(t), FL(t'), F1-F12). In addition, many QSI features respond to the Function inputs in different ways. It is the purpose of this section to describe how different Quantum features respond to function commands and help you get the most out of operating your locomotives. Also, if you intend to make your own output assignments for features using CV 53, it is important to know the implications of different types of features assigned to Neutral and to Forward/Reverse States for the same output.

Classification of DCC Signal Types

There is only one kind of function signal for DCC; either a function is "on" and transmits "1's" every time the command is sent or "off" and transmits "0's" every time the command is sent. However, Quantum has three different ways to respond to DCC function signals as illustrated below.

Level Activated: This is classic response to a DCC function signal. If the DCC function signal is sent at level 0, the feature is not activated. If the DCC function signal is sent at level 1, the feature will activate. The above figure on the left shows a function signal being sent out at t₀, where the level changes from "0" to "1" occurs which will cause a Level Activated feature to respond. One possible advantage of Level Activated Signals is that the operator may know the status of a feature by knowing the logic level that has been sent. However, since function signals are not continuously transmitted, the status of a feature prior to t₀ may not be known unless there had been a recent change to that function or to another function within the same function group.

Another advantage of Level Activated Features is that all locomotives in a Consist receive the same known command. For instance, if the horn feature is turned on, all locomotives blow their horns or if the Mute Feature is activated, all engines will mute their sounds or if directional lighting is turned off, all engines shut down their lighting.

Transition Activated: In this case, the feature is activated whenever there is a transition from level 0 to level 1 or from level 1 to level 0. In the above middle figure example, there would be a feature activation at t₀ and a second activation at t₁. Since the feature is not responding to the logic level of the function signal, the value of the logic level cannot provide any information about the status of the feature.

Pulse Activated: Two transitions within a time period, Δt, is required for a Pulse Activated Feature to respond. It makes no difference if the pulse starts at level 0 or at level 1. The figure above shows a transition from level 0 to level 1 followed by a return to level 0, all within the allotted time period, Δt. The advantage of a pulse activate feature is that it cannot be accidentally activated.

140 This also depends on the type of feature. If it is a triggered feature such as an Air Let-Off, then the logic level provides no information.
Classification of Feature Types

Toggled Features: Features that switch between two states in response to a function command are toggled features. For instance, the Bell sound is a toggled feature; once it is turned on, it stays on, until it is commanded to turn off.

Toggled Features can be activated by any of the above function signals although we generally use Level Activation to operate toggled features. In this case, a Level 1 signal will cause the feature to be in one of the two known states, while a level 0 signal will cause it to be in the other known state. This allows the operator to know which state the feature is in by knowing the status of the function signal at his command station or his handheld. For instance, if the feature is a light which can be changed between on (level 1) and off (level 0), then the operator will know the light has been turned on when he sends a level 1 function signal, even if he cannot see the locomotive.

The Horn is also a toggled feature, which we assign to F2 as its factory default function key. When the F2 key is activated, then “1’s” are sent and the horn sound comes on. The Horn will continue to blow until the F2 key is pressed again to produce “0’s” whereupon the horn sound feature will turn off and stay off.

Some command stations have a horn button that can be pressed to operate the horn effect. The Horn sounds when the horn button is pressed and then turns off when the horn button is released. However, the horn button is a custom feature on those DCC controllers and does not act like a normal F2 function key. The horn button is designed to generate “1’s” whenever the horn button is pressed and held down and send 0’s when the horn button is released. Hence, while the Horn seems like a Momentary Feature when using the horn button, it is actually a Toggled Feature.

Other Toggled Features on Quantum include, Bell, Mute and Blower/Fans. While State Features can be affected by the directional state or other states in the locomotive, the features are nevertheless either “on” or enabled or “off” or disabled until changed.

Level Activation signaling is now assigned to most Toggled Features in Quantum. Air Brakes and Cruise Control on the Lionel® Challenger and the Gas Turbine are the only remaining toggled features that responds to Transition Activation.

State Dependent Toggled Features: Features may also change their state depending on other inputs besides function signals. The status of some features may change when power is turned off and reapplied, or the engine changes its motive state or the speed is changed. For instance, the Bell sound will turn off if power is cycled from on to off to on; Dynamic Brakes will shut off when the speed is reduced below 7smph or whenever the directional state of the locomotive is changed.

Momentary Features: These are single event features that return to their original status after they are activated. Examples are Air Let-offs, Brake Squeal in Forward and Reverse, Doppler shift and Neutral Events like Pop-off, Blow Down, etc. All Quantum Momentary Features are Transition Activated. Although it is possible to use Level Activation, it would seem to have limited use. For instance, you could have an air let-off respond only when the function signal goes to level 0 from level 1 but not respond when going from level 1 to level 0. This would provide an air-let-off, every other time the function key was pressed.

Progressive Features: A Progressive Feature does two things when operated: 1) it activates the currently enabled feature and 2) it enables the next feature. The next time it is operated, it activates the newly enabled feature and enables the next feature. After no more features can be enabled, additional function signals have no affect. An example of a Progressive Feature is engine Shut Down. There are three stages to the shut down operation. Double pressing the F9 Key on an engine in Neutral will put it in Disconnect; the next double press operation of the F9 Key will put it in Standby; the next double press operation of the F9 Key will cause it to enter Total Shut Down. At this point, operating F9 key will have no further effect.

Both the Shut Down and Start Up features are Pulse Activated. This requires that the function key be double-pressed within one second to activate this feature. Double pressing ensures that this feature is not entered accidentally.

Enabled Features: Enabled or armed features are set to react to a second signal or condition to active the feature. An example is coupler arming which later generates a coupler opening sound effect when the Function Key is pressed again at a later time. Armed Features are unique in that they can supplant a specified feature's
reaction to a function signal until the features is triggered. The Coupler Fire feature is an example of this since this feature will not occur until the coupler sound features is armed.

Take Control Features: These are automatic features that can also respond to function key signals. Once the function signal is received, the automatic operation is disabled and the “Take Control” operation is enabled. That feature is then under complete control of the Function Key output signal. For instance, Automatic Blowers/Fans can be toggle to its on or off state by a function key signal and thereafter it looses its automatic operation and now only responds to its function key signal.

With “Take Control” features, there needs to be a way to clear the “Take Control” mode to return the feature to automatic operation. Quantum returns the Take Control feature back to automatic operation when power is turned off and reapplied or if the F6 Start Up Key is operated at any time.
Quantum Features and Control Types

The following table shows each feature that can be assigned to an output and the type of signal used to operate the feature. These include Level, Transition, or Pulse:

- **LA** = Level Activated
- **TA** = Transition Activated
- **PA** = Pulse Activated

SD-Toggled = State Dependent Toggled

<table>
<thead>
<tr>
<th>Feature ID</th>
<th>Feature</th>
<th>Signal Type</th>
<th>Allowed States</th>
<th>Feature ID</th>
<th>Feature</th>
<th>Signal Type</th>
<th>Allowed States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Null Output</td>
<td></td>
<td>All</td>
<td>102</td>
<td>Directional Mars Light</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>Whistle</td>
<td>LA Toggled</td>
<td>All</td>
<td>103</td>
<td>Mars Light</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>3</td>
<td>Bell</td>
<td>LA Toggled</td>
<td>All</td>
<td>104</td>
<td>Strobe Mars Light</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>5</td>
<td>Dynamic Brakes</td>
<td>LA SD-Toggled</td>
<td>All</td>
<td>105</td>
<td>Number Board Lights</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>8</td>
<td>Blower</td>
<td>LA Toggled</td>
<td>All</td>
<td>107</td>
<td>Directional Headlight +</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Hiss/Diesel Cooling Fans</td>
<td></td>
<td></td>
<td></td>
<td>Directional Mars Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Long Air Let-off</td>
<td>TA Momentary</td>
<td>All</td>
<td>108</td>
<td>Directional Headlight +</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Directional Ditch Lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Short Air Let-off</td>
<td>TA Momentary</td>
<td>All</td>
<td>109</td>
<td>Directional Ditch Lights</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>12</td>
<td>Pop-off</td>
<td>TA Momentary</td>
<td>NFF/NFR</td>
<td>110</td>
<td>Ditch Lights</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>13</td>
<td>Blow Down</td>
<td>TA Momentary</td>
<td>NFF/NFR</td>
<td>111</td>
<td>Strobe Ditch Lights</td>
<td>LA Toggled</td>
<td>All</td>
</tr>
<tr>
<td>14</td>
<td>Injector</td>
<td>TA Momentary</td>
<td>NFF/NFR</td>
<td>144</td>
<td>Start Up</td>
<td>PA Momentary</td>
<td>NFF/NFR</td>
</tr>
<tr>
<td>64</td>
<td>Mute</td>
<td>LA-SD Toggled</td>
<td>All</td>
<td>145</td>
<td>Shut Down</td>
<td>PA Progressive</td>
<td>NFF/NFR</td>
</tr>
<tr>
<td>65</td>
<td>Doppler Shift</td>
<td>TA Momentary</td>
<td>FWD/REV</td>
<td>176</td>
<td>Air Brakes</td>
<td>TA-SD Toggled</td>
<td>FWD/REV</td>
</tr>
<tr>
<td>96</td>
<td>Directional Headlight</td>
<td>LA Toggled</td>
<td>All</td>
<td>178</td>
<td>Status Report</td>
<td>TA Momentary</td>
<td>FWD/REV</td>
</tr>
<tr>
<td>97</td>
<td>Directional Reverse Light</td>
<td>LA Toggled</td>
<td>All</td>
<td>177</td>
<td>Cruise Control</td>
<td>TA-SD Toggled</td>
<td>FWD/REV</td>
</tr>
<tr>
<td>98</td>
<td>Headlight</td>
<td>LA Toggled</td>
<td>All</td>
<td>211</td>
<td>Coupler Effect</td>
<td>TA Enable and TA</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Momentary</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Dim Headlight</td>
<td>LA Toggled</td>
<td>All</td>
<td>215</td>
<td>Squealing Brakes</td>
<td>TA Momentary</td>
<td>FWD/REV</td>
</tr>
<tr>
<td>100</td>
<td>Reverse Light</td>
<td>LA Toggled</td>
<td>All</td>
<td>216</td>
<td>Squealing Brakes + Air</td>
<td>TA Momentary</td>
<td>FWD/REV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brakes + Air Brakes</td>
<td>LA Toggled</td>
<td>FWD/REV</td>
</tr>
<tr>
<td>101</td>
<td>Automatic Cab Lights</td>
<td>LA Toggled</td>
<td>All</td>
<td>217</td>
<td>Pumps</td>
<td>LA Toggled</td>
<td>NFF/NFR</td>
</tr>
</tbody>
</table>
Quantum Default Features and Control Types

The following table shows our default feature assignments with function activation control and feature types indicated in blue in parenthesis.

- LA = Level Activated
- TA = Transition Activated
- PA = Pulse Activated
- SD-Toggled = State Dependent Toggled

<table>
<thead>
<tr>
<th>Default F-Key</th>
<th>FWD/REV</th>
<th>NFF/NFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL(f)</td>
<td>Headlight Directional Lighting (LA Toggled)</td>
<td>Headlight Directional Lighting (LA Toggled)</td>
</tr>
<tr>
<td>FL(r)</td>
<td>Reverse Light Directional Lighting (LA Toggled)</td>
<td>Reverse Light Directional Lighting (LA Toggled)</td>
</tr>
<tr>
<td>F1</td>
<td>Bell (LA Toggled)</td>
<td>Bell (LA Toggled)</td>
</tr>
<tr>
<td>F2</td>
<td>Whistle/Horn (LA Toggled)</td>
<td>Whistle/Horn (LA Toggled)</td>
</tr>
<tr>
<td>F3</td>
<td>Coupler Crash-Coupler Fire (TA Momentary)</td>
<td>Coupler Arm (Enable) or Coupler Fire (TA Enabled or TA Momentary)</td>
</tr>
<tr>
<td>F4</td>
<td>Steam Blower Hiss/ Diesel Fans and Louvers/ Electric Cooling Fans</td>
<td>Steam Blower Hiss (LA Toggled) Diesel Fans and Louvers/ Electric Cooling Fans</td>
</tr>
<tr>
<td>F5</td>
<td>Dynamic Brakes (LA SD-Toggled)</td>
<td>Dynamic Brakes (LA SD-Toggled)</td>
</tr>
<tr>
<td>F6</td>
<td>Doppler Shift (TA Momentary)</td>
<td>Engine Start Up (PA Momentary)</td>
</tr>
<tr>
<td>F7</td>
<td>Brake Squeal-Flanges (TA Momentary) Air Brakes (TA-SD Toggled)</td>
<td>Long Air Let-off (TA Momentary)</td>
</tr>
<tr>
<td>F8</td>
<td>Sound Mute (LA Toggled)</td>
<td>Sound Mute (LA Toggled)</td>
</tr>
<tr>
<td>F9</td>
<td>Cruise Control (TA Toggled)</td>
<td>Shut Down 141: Disconnect-Low Idle set-Total Shut Down (PA Progressive)</td>
</tr>
<tr>
<td>F10</td>
<td>Status Report (TA Momentary)</td>
<td>Status Report (TA Momentary)</td>
</tr>
<tr>
<td>F11</td>
<td>Number Board Lights (LA Toggled)</td>
<td>Number Board Lights (LA Toggled)</td>
</tr>
<tr>
<td>F12</td>
<td>Automatic Cab Light (LA-SD Toggled)</td>
<td>Automatic Cab Light (LA-SD Toggled)</td>
</tr>
</tbody>
</table>

The features were designed and assigned to provide the greatest consistency of operation of the different types of locomotives (Steam, Diesel and Electric) as well as maintaining the greatest level of correspondence between the displayed function settings and operating feature status.

Note that FL(f), FL(r), F1, F2, F4, F8, F11 and F12 all are Level Activated Toggled Features. This means that the display for these features is likely to indicate the true status of the features.

Most other features are Transition or Pulse Activated Momentary type, which only responds to changes in the function inputs. Statuses for these features are not required since they return to their initial state after a short period. This includes F3, F6, F7, F9-Shut Down, and F10.

F8, Sound Mute, always comes on it its non-mute state when power is first applied. Since the F-Key status could be displayed as "1" during start up, it may not match the status of the Mute feature in the locomotive. However, the status of this feature is quite evident by the fact the engine is making sound. If the Mute Key is operated even once, the status of the Mute key function display will then match the locomotive Mute status for the remainder of the operating session.

Since Dynamic Brakes is a State Dependent feature, it status in the locomotive may not match the F-Key function display of "1". However, since the Dynamic Brakes will shut off whenever entering Neutral or slowing below 7mph, unless you hear the Dynamic Brakes or have recently turned them on with a level 1 setting, it is fair assumption that they are off. If the display for F5 is "0", then the Dynamic Brakes are known to be off.

141 There are three stages to Shut Down. To operate Shut down, you will need to double click the F9 key for each stage.

Quantum DCC Reference Manual v.3.0 162 16 February 2005
F9-Cruise Control is the only feature that will need to be monitored by observing or listening to the locomotive to determine if the feature is on or off. Since it is a Transition Activated Toggled Feature, the display status of F9 bears no relation to the actual Cruise Control status of the locomotive.
Appendix VI

Interaction of Function Keys, Function Groups, Function Inputs and Outputs and Feature Assignments

The diagram below shows graphically how the Function Keys, Function Groups, Function Inputs, and Outputs are configured and how they interact.
Function Keys and Function Groups: The thirteen colored squares shown on the left side of the dotted vertical line, designated FL, and F1 through F12 represent push buttons or Function Keys located at the Command Station or on the DCC walk-around throttle.

The Function Keys are shown color-coded depending on which Function Group they use to transmit their bit settings to the locomotive's decoder. Keys FL through F4 (Yellow) use Function Group 1 to send information to the locomotive. Keys F5 through F8 (Orange) and Keys F8 through F12 (Gold) both use Function Group 2 but not at the same time. Bit 5 in Function Group 2 specifies whether this Function Group applies to F5 – F8 or F8 - F12. Each Function Group command contains 4 or 5 bit settings for the Function Inputs.

The locomotive's decoder, shown to the right of the vertical dotted line, receives Function Group commands. Whenever a Function Group Command is sent, the function values are stored in memory as a Function Inputs, each with a logic level of 1 or 0.

Function Inputs and Outputs: Each Function Input is shown connected to a corresponding Function Output designed by the squares Out 1 through Out 14.

The boxed labeled "CV's 33-46" with black arrow pointing up indicates that these CV's determines which Function Input controls which desired Function Output. Function Inputs cannot be connected to any Function Output. For instance, Function Inputs FL through F3 can only be connected to Outputs 1 through 8 (see CV 33-37). The diagram shows the default connections between Function Inputs and Outputs. In the description of each CV 33-42, the default Output is shown with gray background [as an example, see CV 41 on page 61, which shows the Output locations for F7. The default is Output 7 (bit 5) and is shown with gray fill, which corresponds to Output 9].

The FL Function Key is special since it connects to two different Function Inputs depending on the locomotive's direction setting. This is shown schematically in the diagram where the position of the single-pole double-throw switch, SW1, is determined by the engine's direction (FWD or REV). In Forward (or Neutral from Forward), the switch, SW1 is in the top position which connects the FL Key to the FL(f) input. When the engine is in Reverse (or Neutral from Reverse), the SW1 would be in the bottom position, which connects the FL(f) Key to the FL(r) Input.

The default Outputs for FL(f) and FL(r) are Out 1 and 2 respectively. If the locomotive is in Forward or Neutral from Forward, the FL key will affect the features connected to Out 1. If the locomotive is in Reverse or Neutral from Reverse, the FL key will affect the features connected to Opt 2. Function Outputs 1 and 2 are generally used for directional lighting effects and are usually assigned to the FL(f) and FL(r) Inputs respectively, which are the Quantum default settings.

Although each Function Input is shown connected to only one Output, there is no restriction in connecting an Input to more than one Output. This can be useful if it is desired to control two or more features at the same time. For instance, it might be desired to have the Bell turn on at the same time the Reverse Light is turned on by the FL(r) Key or to have Ditch Lights operate at the same time the Horn is activated.

Since there are only fourteen Inputs and fourteen Outputs, if more than one Output is connected to an Input, there may be unused Inputs.

Of course, the unused Inputs could be connected to other Outputs that are already assigned but this is not recommended. Because there is more than one Input controlling an Output, it is unclear which Input has control. The software is written such that the common Output would be on if any of its Inputs are on. In other words, the Output is on if and only if all connected Inputs are on. Outputs that are not connected to a Function Input are always off.

Outputs and Features: The box labeled "CV 53" with black arrow pointing up indicates that this CV determines which feature is connected to which Output. CV 53 also allows different features or accessories to be assigned to the Neutral States (locomotive stopped) or to a Motive States (Forward/Reverse). Features shown in the green boxes are assigned to the Motive States and features shown in the red boxes are assigned to the Neutral States. The diagram shows the default Quantum features assigned to the different Function Outputs for Motive and Neutral states.

142 In other words, the Inputs to a common Output are OR'ed.
Effects of Mixing Different Types of Features: Quantum previously had restrictions on assigning to the same output different types of features with different feature activation methods (Level, Transition or Pulse) for operation in Neutral or Forward/Reverse. The reasons were obvious. If you assigned one feature for operation in Neutral and then another for Forward/Reverse, then the function input would be changed for both. For instance, if the Bell was assigned to output 3 in Forward/Reverse and Number Board Lights assigned to output 3 in Neutral, than there is an issue of what would happen to the Number Board Lights if you turned on the Bell in Forward by sending out a level 1 function and then entered Neutral? The function input for output 3 is still at the new value of level 1. Do the Number Board Lights automatically come on, if previously off?

To avoid this problem, we have a simple rule:

An output for a particular directional state (Forward/Reverse or Neutral) will change state, if and only if its Function Input changes while in that directional state.

There would seem to another way that we could accidentally operate a feature. We could make the change to a feature assigned to an output in one directional state, and after we change to a new directional state, we operate some other function within the same function group. For instance, in the above example, we could turn on the Bell in Forward/Reverse with a level 1 function input signal, followed by operating the Horn in Neutral. Now when the common function group, Function Group 1, command packet is sent, it will also change the function input for output 3 and would turn on the number board lights. However, the above rule still applies since the function input did not change; it remained at level 1, and hence its output did not change. In order for the operator to turn on the Number Board Lights in this case, he would need to send a level 0 function followed by a level 1 function to output 3 while in Neutral.

The main difficulty with mixing different features in Neutral and Forward/Reverse, is that the status of the function at the command station or handheld, does not match the expected associated behavior of assigned toggled features. This is compounded by state dependent toggled features where other inputs can change the status of a feature independent of the function commands and also by Transition or Pulse Activated toggled features, where the function input level has no bearing of the feature status. While an operator may not know what the status of some features are, he does know that whenever a function input is changed, the function input in the Quantum decoder will match the value indicated at the command station or the handheld during an the entire uninterrupted operating session. The operator can also infer that for most Level Activated Toggled Features, the state of a feature will match the associated level of the function signal directly after sending a function signal. In other words, the operator will know that he has turned on the Number Board Lights directly after he has sent out the appropriate level 1 function for that feature.

Note that these issues only apply to toggled features. There certainly is no issue for Momentary Features, where they always return to their original status, or any other features that are Transition or Pulse activated.

142 Unless he selects a different locomotive whereupon all indicated function key status may very well have no relationship with the function inputs in the newly selected locomotives decoder.
Appendix VII

Recommended Reading:

Ireland, Zana (Editor In Chief), *The Digitrax Big Book of DCC*, Digitrax, 1999.

Appendix VIII

Application Notes:

Using DC Power Conversion for Block Signal Control

CV 29, Bit 2 =1. Applications for DC Power Conversion: Block Signal Control

DCC Power Conversion as described under CV 29, bit 2, was implement into Quantum in a way that allows for simple block signal control. Using DC power conversion allows the operator to enable a red signal light to stop a train smoothly, using its internal momentum settings, without having to use the throttle. If Bit 2=1 for CV 29, a DCC controlled engine will automatically engage DC Power Conversion when it enters a section of track what is powered with standard DC. If the polarity would normally power the analog engine in the direction it is going when it enters the DC section, the engine will continue through the DC block at the same speed. If the polarity would normally power the engine in the Reverse direction, the engine will smoothly come to a stop in the DC section.

The diagram below shows a DCC section connected to a DC section of track. The DC section is powered from the DCC power signal rather than from a separate power supply or battery. For this application, it is only necessary to insulate the one rail as shown by the two insulated rail joiners at either end of the DC section; the other rail is electrically connected to the DCC section by conductive rail joiners.

When switch 2 (SW 2) is open, the DCC signal is half-wave rectified by diodes D1 or D2 to produce a positive DC signal to the DC section when Switch 1 is at position A or a negative DC signal when Switch 1 is at position B. If Switch 2 is closed, the DCC signal is connected directly to the DC section and D1 and D2 have no effect on applying DC power to the DC section.
If DC power conversion is enabled in CV 29 (bit 2 = 1) and SW 2 is open, the polarity on the DC section can be used to stop the Quantum equipped train or let it precede, depending on the position of SW 1. If the engine is entering the DC section from the right, and SW 1 is set to A, the engine will continue at its current speed setting through the DC section. The engine, of course, will not respond to DCC signals until it leaves the DC section and reenters the DCC powered section at the far left. On the other hand, if SW 1 is set to B, the polarity on the DC section is opposite the engine's direction and the engine will slow to a stop at its DCC momentum setting. If the polarity is reversed again to be consistent with the engines direction, the engine will accelerate at its current DCC momentum setting to leave the DC section. Alternately, SW 2 could have been closed to cause DCC signals to be applied to the stopped engine, which would also have caused the engine to accelerate at its current DCC momentum value to its DCC speed setting.

Since the DC portion is powered from the DCC signal, there are no short circuit problems between the DCC powered section and the DC section as the engine wheels pass over the track insulators. In addition, since the Quantum engine is equipped with large filter capacitors, the reduced power of half-wave rectification will not affect the power available to operate the engine so there is minimal slow down effect. Also, if the train is made up of a series of Quantum engines in a Consist, and the polarity is set to stop the train, each engine in turn will couple the DCC signal through to the DC section until the last engine has passed over the boundary; only then will the entire Consist come to a stop.

The above diagram is simplified to make it easy to describe the basic concept. Switch 1 can be a relay powered by a train detector on the next block to do automatic train control. In addition, Switch 1 could have extra contracts to control red and green signals for the actual block signal. Switch 2 could also be part of relay network for all DC blocks to disable or enable block signal operation.

D1 and D2 should be rated at 2 amps minimum and have a breakdown voltage of 30 volts or more.
Appendix IX

Binary, Hexadecimal, Decimal Conversions

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000</td>
<td>00000000</td>
<td>1</td>
<td>00000001</td>
<td>00000001</td>
<td>2</td>
<td>00000010</td>
<td>00000001</td>
<td>3</td>
<td>00000011</td>
<td>00000011</td>
</tr>
<tr>
<td>4</td>
<td>00000100</td>
<td>00000100</td>
<td>5</td>
<td>00000101</td>
<td>00000101</td>
<td>6</td>
<td>00000110</td>
<td>00000110</td>
<td>7</td>
<td>00000111</td>
<td>00000111</td>
</tr>
<tr>
<td>8</td>
<td>00001000</td>
<td>00001000</td>
<td>9</td>
<td>00001001</td>
<td>00001001</td>
<td>10</td>
<td>00001010</td>
<td>00001010</td>
<td>11</td>
<td>00001011</td>
<td>00001011</td>
</tr>
<tr>
<td>12</td>
<td>00001100</td>
<td>00001100</td>
<td>13</td>
<td>00001101</td>
<td>00001101</td>
<td>14</td>
<td>00001110</td>
<td>00001110</td>
<td>15</td>
<td>00001111</td>
<td>00001111</td>
</tr>
<tr>
<td>16</td>
<td>00010000</td>
<td>00010000</td>
<td>17</td>
<td>00010001</td>
<td>00010001</td>
<td>18</td>
<td>00010010</td>
<td>00010010</td>
<td>19</td>
<td>00010011</td>
<td>00010011</td>
</tr>
<tr>
<td>20</td>
<td>00010100</td>
<td>00010100</td>
<td>21</td>
<td>00010101</td>
<td>00010101</td>
<td>22</td>
<td>00010110</td>
<td>00010110</td>
<td>23</td>
<td>00010111</td>
<td>00010111</td>
</tr>
<tr>
<td>24</td>
<td>00011000</td>
<td>00011000</td>
<td>25</td>
<td>00011001</td>
<td>00011001</td>
<td>26</td>
<td>00011010</td>
<td>00011010</td>
<td>27</td>
<td>00011011</td>
<td>00011011</td>
</tr>
<tr>
<td>28</td>
<td>00011100</td>
<td>00011100</td>
<td>29</td>
<td>00011101</td>
<td>00011101</td>
<td>30</td>
<td>00011110</td>
<td>00011110</td>
<td>31</td>
<td>00011111</td>
<td>00011111</td>
</tr>
<tr>
<td>32</td>
<td>00100000</td>
<td>00100000</td>
<td>33</td>
<td>00100001</td>
<td>00100001</td>
<td>34</td>
<td>00100010</td>
<td>00100010</td>
<td>35</td>
<td>00100011</td>
<td>00100011</td>
</tr>
<tr>
<td>36</td>
<td>00100100</td>
<td>00100100</td>
<td>37</td>
<td>00100101</td>
<td>00100101</td>
<td>38</td>
<td>00100110</td>
<td>00100110</td>
<td>39</td>
<td>00100111</td>
<td>00100111</td>
</tr>
<tr>
<td>40</td>
<td>00101000</td>
<td>00101000</td>
<td>41</td>
<td>00101001</td>
<td>00101001</td>
<td>42</td>
<td>00101010</td>
<td>00101010</td>
<td>43</td>
<td>00101011</td>
<td>00101011</td>
</tr>
<tr>
<td>44</td>
<td>00101100</td>
<td>00101100</td>
<td>45</td>
<td>00101101</td>
<td>00101101</td>
<td>46</td>
<td>00101110</td>
<td>00101110</td>
<td>47</td>
<td>00101111</td>
<td>00101111</td>
</tr>
<tr>
<td>48</td>
<td>00110000</td>
<td>00110000</td>
<td>49</td>
<td>00110001</td>
<td>00110001</td>
<td>50</td>
<td>00110010</td>
<td>00110010</td>
<td>51</td>
<td>00110011</td>
<td>00110011</td>
</tr>
<tr>
<td>52</td>
<td>00110100</td>
<td>00110100</td>
<td>53</td>
<td>00110101</td>
<td>00110101</td>
<td>54</td>
<td>00110110</td>
<td>00110110</td>
<td>55</td>
<td>00110111</td>
<td>00110111</td>
</tr>
<tr>
<td>56</td>
<td>00111000</td>
<td>00111000</td>
<td>57</td>
<td>00111001</td>
<td>00111001</td>
<td>58</td>
<td>00111010</td>
<td>00111010</td>
<td>59</td>
<td>00111011</td>
<td>00111011</td>
</tr>
<tr>
<td>60</td>
<td>00111100</td>
<td>00111100</td>
<td>61</td>
<td>00111101</td>
<td>00111101</td>
<td>62</td>
<td>00111110</td>
<td>00111110</td>
<td>63</td>
<td>00111111</td>
<td>00111111</td>
</tr>
</tbody>
</table>
Appendix X

Rights and Obligations

<table>
<thead>
<tr>
<th>QSIndustries, Inc. Software License Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant of License: QSIndustries, Inc. grants you, the owner, the right to use the software that is included with your Quantum system only with the Quantum equipped locomotive that you purchased.</td>
</tr>
<tr>
<td>2. Copyright: The software is owned by QSIndustries, Inc. and is protected by United States copyright laws and international treaty provisions. Therefore, neither you nor anyone else may copy the software.</td>
</tr>
<tr>
<td>3. Limited Warranty: QSI does not offer an explicit Software warranty. Check with individual manufacturers on details for Software warranty.</td>
</tr>
</tbody>
</table>

Proprietary Rights and Obligations

The structure and organization of the Software/Firmware are the valuable property of QSIndustries, Inc. You will not make or have made, or permit to be made, any copies of the Hardware, Software/Firmware, code, or any portions thereof. You are not to modify, adapt, translate, reverse engineer, de-compile, disassemble or create derivative works based on the Hardware or Software/Firmware. Trademarks shall be used in accordance with accepted trademark practice, including identification of trademark owner’s name. The Quantum Hardware, Software and Firmware are covered by U.S. Patent No. 4,914,431; 5,184,048; 5,267,318; 5,394,068; 5,448,142; 5,633,985; 5,832,431; 5,896,017; 5,940,005; and other US and Foreign patents pending.

No Other Rights

QSIndustries, Inc. retains ownership of the Quantum Hardware design and operating Software/Firmware code. Except as stated above, this agreement does not grant you any rights to intellectual property rights to the Quantum Software, Firmware or Hardware. The use of any trademarks as herein authorized does not give you any rights of ownership in that trademark.
Index

A

About Quantum Decoder .. 108
Acceleration ... 7, 15, 21, 24, 31, 32, 42, 47, 51, 85
Acceleration Inertia .. 31
Acceleration Speed Steps ... 31
Acknowledgements ... 22, 23
Acknowledgements (Verbal) .. 23, 88, 89
Adjust Volume with Magnetic Wand 155
Air Brakes ... 118, 119, 121
Air Brakes (F7) ... 14
Air Brakes in Neutral (F7) ... 14
Air Horns ... 119, 123
Air Pumps ... 16, 95, 99, 117, 118, 119, 120, 121, 123, 124, 161
Air Release ... 14, 117, 121, 123
Analog Control ... 5, 13, 30, 52, 91
Applied Motor Voltage ... 29, 33
Apply Air Brakes .. 14, 14
Articulated Chuff ... 117
Automatic Features .. 17
Automatic Sounds, Diesel ... 119
Automatic Sounds, Electric ... 121
Automatic Sounds, Gas Turbine ... 123
Automatic Sounds, Steam .. 117

B

Bell5, 9, 11, 13, 24, 43, 55, 57, 59, 61, 63, 65, 66, 94, 95, 97, 100, 111, 117, 121, 145, 151, 153, 161, 166
Bell Button ... 12
Bells .. 119, 123
Block Signal Control ... 171
Blow Down ... 19, 45, 81, 83, 95, 97, 117, 158, 161
Blowers and Fans9, 12, 16, 17, 18, 43, 44, 55, 56, 58, 60, 62, 63, 66, 67, 69, 71, 73, 75, 95, 96, 97, 100, 117, 118, 161, 162
Brake .. 119
Brake Squeal .. 9
Brake, Bell, Air Release Malfunction 151
Brakes .. 117, 121, 123
Brakes (Automatic) .. 14
Brakes Sounds (Extended) ... 14
Braking Value ... 14
Build Information .. 109
Byte (8 bit word) .. 53

C

Cab Lights .. 9, 16, 18, 45, 98, 118, 121, 161
Cab Lights Disabled ... 45
Changing between Diesel and Gas Turbine Mode 134
Chuff .. 14, 95
Chuff per Wheel Revolution .. 104
Classification of DCC Signal Types .. 157
Classification of Feature Types .. 158
Command Station .. 39, 53, 55
Entering Extended Address in Ops Mode 107
Entering Primary Address in Ops Mode 106
Function Keys ... 55
Programming CV’s Directly .. 39
Programming Options ... 53, 106
Recommended ... 145

Setting Train Number .. 40
Troubleshooting Headlight .. 151
Troubleshooting Programming .. 152
Command Station Note ... 13, 22, 28, 41, 91, 92, 102
Command Station Quantum Operation 41
Command Stations ... 5, 22, 39
Concave “Slow Start” Curves .. 50
Configuration Variables (CV) ... 5, 6, 7, 21
Configuration Variables Explained ... 21
Conformance ... 22
Consist ... 46
Consist .. 8, 42, 43
Consist Address ... 21, 24, 42, 43, 45
Controllable Sounds, Diesel .. 119
Controllable Sounds, Electric ... 121
Controllable Sounds, Gas Turbine .. 123
Controllable Sounds, Steam .. 117
Convex “Fast Start” Curves ... 50
Cooling Fans ... 119, 121, 123
Coupler Air-Lines ... 12
Coupler Arm ... 12
Coupler Crash ... 12
Coupler Fire .. 12
Coupler Lift Bar ... 12
Coupler Sounds9, 12, 43, 95, 99, 100, 118, 120, 121, 124, 161, 162
Coupler Sounds, Operation .. 57, 59, 61, 63, 65, 67, 69, 71, 73, 75
Coupling Pin .. 12
Cruise Control8, 9, 15, 19, 45, 55, 68, 70, 72, 74, 76, 80, 82, 84, 98, 100, 161, 162
Curve Tables in order of value for CV 25 50
CV 1 Primary Address Control .. 28
CV 1: Primary Address Register ... 28
CV 1: Primary Address Register ... 27
CV 11 Packet Time-out Value ... 24, 38
CV 17, 18 Extended Address .. 24, 39, 53
CV 17: Extended Address Most Significant Byte Register 39
CV 18: Extended Address Least Significant Byte Register 39
CV 19 Consist Address .. 24, 42
CV 19: Consist Address Active for FL and F9-F12 Register 42
CV 2 V-Start ... 24, 29, 51
CV 2: V-Start Register .. 29
CV 21 Consist Address Active for F1-F8 Register 43
CV 22 Consist Address Active for FL 24, 42, 43, 45
CV 22: Consist Address Active for FL and F9-F12 Register 45
CV 23 Acceleration Adjustment .. 9, 24, 38, 42, 47, 53
CV 23: Acceleration Adjustment Register 47
CV 24 Delegation Adjustment .. 9, 24, 38, 42, 48, 53
CV 24: Deceleration Adjustment Register 48
CV 25 Quantum Speed Table Selection 24, 49
CV 25: Quantum Speed Table Selection Register 49
CV 29 Configuration Data ... 24, 52
Accessory Decoder .. 53
Advanced Acknowledgement ... 53
Common Settings ... 54
Direction Control ... 52
Extended Address .. 53
FL Location .. 52

Quantum DCC Reference Manual v.3.0
CV 29: Configuration Data Register

CV 30: Error Information

CV 33: Output Location for FL(f)

CV 34: Output Location for FL(r)

CV 35: Output Function Location for F1

CV 36: Output Function Location for F2

CV 37: Output Location for F3

CV 38: Output Function Location for F4

CV 39: Output Location for F5 Register

CV 40: Output Function Location for F6

CV 41: Output Function Location for F7

CV 42: Output Location for F8 Register

CV 43: Output Function Location for F9

CV 44: Output Location for F10 Register

CV 45: Output Function Location for F11

CV 46: Output Location for F12 Register

CV 49: QSI Primary Index

CV 49: Primary Index Register (PI)

CV 49: Primary Index Register

CV 49-64, QSI Configuration Variables Overview

CV 5 V-High

CV 50: QSI Secondary Index

CV 51: QSI System Sound Control

CV 51.0 Operations Mode System Volume

CV 51.0: Ops Mode System Volume Register

CV 51.1 Operations Mode Volume Register

CV 51.2: Special Sound Effects Enable Register

CV 52.PI: Individual Sound Volume Registers

CV 53: Output Feature Assignment Register

CV 55.QSI Feature Configuration

CV 55:110.5 Ditch Light Strobe Time

CV 56: QSI Configuration

CV 56.10: Speed Step to Scale MPH Scale Factor Register

CV 56.10: Speed Step to Scale MPH Scale Factor

CV 56.12: Chuff Interval Scale Factor Register

CV 56.128: Reset to Factory Default Register

CV 56.128: Reset to Factory Default

CV 56.129: Engine ID Access Register

CV 56.254: About Quantum Decoder

CV 56.255: Play Build Information Register

CV 56.4: QSI Throttle Mode Register

CV 56.4: QSI Engine Configuration

CV 56.6: V-Mid

CV 62: QSI Control Register Disable

CV 64: Numeric Verbal Readout (Verbal CV Inquiry)

CV 65: Kick Start

CV 66: Forward Trim

CV 67-94: User Defined Speed Table

CV 67-94: User Defined Speed Registers

CV 7: Manufacturer's Version Number

CV 8: Manufacturer's ID Register

CV 9: Total PWM Period

CV 95: Reverse Trim

CV 95: Reverse Trim Registers

CV’s

Manufacturer Unique

QSI Shorthand Notation

QSI's Descriptions and Overview

CV10 EMF Cutout

D

DCC Locomotive Operation (Getting Started)

DCC Operation for Quantum Gas Turbine

DCC Programming for the Gas Turbine

Deceleration

Deceleration Inertia

Deceleration Speed Steps

Deceleration, Actual

Decoder

Decoder Outputs

Diesel Automatic Sounds

Diesel Controllable Sounds

Diesel Engine Start Up

Diesel Locomotive

Diesel Motor

Diesel Motor Rev

Diesel Sounds

Diesel Take Control Operation

Diesel Turbo

Dim Headlight

Directional Ditch Lights

Directional Lighting

Directional Lighting System (see also F0)

Ditch Lights

Directory

Directional Strobe

Directional Strobe

Disconnect

Ditch Lights

Ditch Lights

Quantum DCC Reference Manual v.3.0

178

16 February 2005
Ditch Lights Strobe when Horn Blows .. 11
Doppler 13, 14, 19, 55, 56, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75, 77,
79, 81, 83, 86, 93, 97, 100, 161
Doppler Bell Effect .. 13
Doppler Operation ... 13
Doppler Run-by .. 118, 119, 121, 124
Doppler Shift ... 9, 43
Doppler Shift (Horn Button Method) ... 13, 93
Double Press ... 15, 16, 17, 19
Dynamic Brakes 9, 12, 13, 16, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75,
77, 91, 83, 87, 95, 97, 100, 118, 119, 121, 124, 126
Dynamo (steam) .. 10, 11, 95

E

Effects of Mixing Different Types of Features .. 167
Electric Loco Start Up ... 17
Electric Locomotive ... 5, 12, 16
Electric Locomotive Automatic Sounds ... 121
Electric Locomotive Controllable Sounds .. 121
Electric Locomotive Sounds .. 121
Electric Take Control Operation ... 18
Electric Traction Motor Sound-of-Power .. 12
Enabled Features .. 158
End Helper .. 46
End Helper Directional Lighting ... 46
End Helper Headlight ... 46
End Helper’s Reverse Light ... 46
Engine Makes No Sounds .. 151
Engine Malfunction ... 151
Engine Slows During Horn .. 151
Entering Long (Extended) Address in CV 55, 129 106
Entering short (Primary) Address in CV 55, 129 106
Example
Primary and Secondary Indices using CV 53 87
Program CV 17 and CV 18 to Extended Address (binary) 40
Program CV 17 and CV 18 to Extended Address (decimal) 40
Example: Reset Quantum to Original Factory Defaults 105
Example: Reset the Individual Sound Volumes to Factory Defaults 105
Example: Select Throttle Control .. 103
Example: Set Your Engine’s ID to the Short Address “23” 106
Example: Set Your Engine’s Long Address to “S343” 107
Example: Set Your Engine’s Long Address to “S344” 107
Example: For Dual Pump Steam Engines .. 94
Example: Hear the Current Setting for CV 2 V-Start 111
Example: Hear the Current Setting for the Bell Volume 111
Example: Play Version ... 109
Example: Set Long & Short Air Let-Off to an Output 96
Examples of Common Train Numbers .. 107
Extended Address (see also CV 17,18) .. 24, 39, 42, 53, 106, 107

F

F0 (see also FL) .. 9
F0 or FL not affecting Headlight ... 11
F0-F12 Function Standard ... 9, 55
F0-F8 Function Standard .. 55
F0-F8 Function Standard .. 9
F1, Bell .. 11
F10.. 15
F10 Status Report .. 15
F2 11, 13, 24, 43, 55, 63, 145, 173
F2, Horn/Whistle ... 11
F3 11, 14, 24, 43, 55, 65, 66, 145, 173
F3, Bell .. 11

G

Gas Turbine ... 126
Gas Turbine Air Compressor ... 125
Gas Turbine Automatic Features ... 138
Gas Turbine Automatic Sounds ... 123
Gas Turbine Changing Individual Sound Volumes 141
Gas Turbine Changing the System Volume Electronically 141
Gas Turbine Controllable Sounds ... 123
Gas Turbine Coupler and Coupler Crash Sou 136
Gas Turbine Diesel Alternator .. 125
Gas Turbine Diesel Generator ... 125
Gas Turbine Directional Lighting Operation 136
Gas Turbine Disable/Enable Verbal Announcements 142
Gas Turbine Doppler Operation ... 137
Gas Turbine Dynamic Brakes ... 138
Gas Turbine Enable/Disable Doppler Shift 141

Quantum DCC Reference Manual v.3.0

Page 36 of 39
<table>
<thead>
<tr>
<th>Recommended DCC Command Stations</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Curve</td>
<td>50</td>
</tr>
<tr>
<td>Summary of Light Operation</td>
<td>10, 11</td>
</tr>
<tr>
<td>User Defined Speed Table Default Values</td>
<td>114</td>
</tr>
<tr>
<td>Table Indexing System, PI and SI</td>
<td>85</td>
</tr>
<tr>
<td>Take Control Features</td>
<td>159</td>
</tr>
<tr>
<td>Take Control Operation</td>
<td>17</td>
</tr>
<tr>
<td>Diesel</td>
<td>18</td>
</tr>
<tr>
<td>Electric</td>
<td>18</td>
</tr>
<tr>
<td>Steam</td>
<td>18</td>
</tr>
<tr>
<td>Throttle Control (see Standard Throttle Control)</td>
<td>7</td>
</tr>
<tr>
<td>Throttle Control Malfunction</td>
<td>151</td>
</tr>
<tr>
<td>Throttle Mode</td>
<td>101, 102</td>
</tr>
<tr>
<td>Toggled Features</td>
<td>158</td>
</tr>
<tr>
<td>Total Shut Down</td>
<td>15, 16, 17, 68, 70, 72, 74, 76, 78, 80, 82, 84</td>
</tr>
<tr>
<td>Traction Motor Whine</td>
<td>121</td>
</tr>
<tr>
<td>Traction Motors</td>
<td>12, 95</td>
</tr>
<tr>
<td>Transition Activated</td>
<td>157</td>
</tr>
<tr>
<td>Transition from Diesel to Turbine and Ignition</td>
<td>123</td>
</tr>
<tr>
<td>Transition from Turbine to Diesel</td>
<td>124</td>
</tr>
<tr>
<td>Trim Factor</td>
<td>113, 115</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>Operations Mode</td>
<td>151</td>
</tr>
<tr>
<td>Program Track Operation</td>
<td>152</td>
</tr>
<tr>
<td>Using the Quantum Reset Jumper</td>
<td>153</td>
</tr>
</tbody>
</table>

V

V High	24
Veranda Gas Turbines	125
Verbal Acknowledgement	110
Verbal Readout (see CV 64)	25, 111
Verbal Reporting Malfunction	152
Verbal Speedometer Readout	15
V-Mid	24
Volume Adjustment Magnetic Wand	154
Volume Adjustment Potentiometer	154
Volume Control	15, 27, 85, 88, 91, 92, 94
Volume Control in db	94

W

Water Injector	19, 95, 97, 117, 161
Whistle	117
Whistle	9, 11, 13, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 95, 97

© 2005 QSIndustries, Inc. All rights reserved. Information in this publication supersedes that in all previous published material. The contents and the product it describes are subject to change without notice. Broadway Limited is a trademark of Broadway Limited, Inc. Lionel is a registered trademark of Lionel LLC. QSI is a registered trademark of QSIndustries, Inc. Sound of Power, Quantum, QARC and Quantum Analog Remote Control are trademarks of QSIndustries, Inc. All other trademarks are the property of their respective holders. QSI makes no representations or warranties with respect to this publication. In no event shall QSIndustries, Inc., be liable for any damages, direct or incidental, arising out of or related to the use of this publication.