Jacobsen Declaration
Exhibit J
This Recommended Practice provides a map and descriptions for Digital Decoder Configuration Variables. Configuration Variables allow the decoder to be customized for each locomotive, or other mobile or stationary devices. Configuration Variables shall be stored in non-volatile memory and must not change when power is removed from the decoder over very extended periods of time. While all Digital Decoders need not implement all of these variables, it is recommended that if the applicable function is provided, that these variable assignments are adhered to.

### General Definitions

Table 1 identifies each of the Configuration Variables(CVs), along with additional information about each one. Following Table 1 is a written description of each of the CVs. CVs 1-512 are for Multi-Function Digital Decoders, while CVs starting at 513 are for Accessory Decoders. In Table 1 each Configuration Variable(CV) is identified by name and number, along with the following information:

- **Required:** Mandatory(M), Recommended(R) or Optional(O). CVs identified as Mandatory(M) must be implemented in order to conform to this Recommended Practice, while those marked as Recommended(R) are strongly encouraged, and those marked Optional(O) are at the manufacturer's discretion.
- **Default Value:** the required factory default value when the CV is provided in an implementation.
- **Read-Only:** indicates a CV whose value should be set by the manufacturer and which the user cannot modify.
- **Uniform Spec:** Many CVs are implementation specific and no uniform specification is required. Others must be implemented in a uniform fashion in order to achieve compatibility. A "Y" in the Uniform Spec column indicates a CV which requires implementation by manufacturers according to a common specification.
- **Additional Comments:** CVs identified as "Reserved by NMRA for future use" are allocated for future needs and must not be used by an implementor without prior written approval from the NMRA Technical Department. CVs identified as "Values assigned by NMRA" indicate that the allowable values are defined by the NMRA and any requests for additional values should be directed to the NMRA Technical Department. CVs identified as "Reserved for manufacturer use" are allocated for use by implementors, for which no prior NMRA authorization is needed, and for which no common usage across decoders from different implementors can be assured by the NMRA.

### Table 1 Configuration Variables

<table>
<thead>
<tr>
<th>CV Name</th>
<th>CV#</th>
<th>Required</th>
<th>Default Value</th>
<th>Read Only</th>
<th>Uniform Spec</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Multi-function Decoders:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Address</td>
<td>1</td>
<td>M</td>
<td>3</td>
<td>-</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Vstart</td>
<td>2</td>
<td>R</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acceleration Rate</td>
<td>3</td>
<td>R</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Deceleration Rate</td>
<td>4</td>
<td>R</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vhigh</td>
<td>5</td>
<td>O</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vmid</td>
<td>6</td>
<td>O</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Manufacturer Version No.</td>
<td>7</td>
<td>M</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Manufacturer defined version info</td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td>8</td>
<td>M</td>
<td>Y</td>
<td>-</td>
<td>Y</td>
<td>Values assigned by NMRA</td>
</tr>
<tr>
<td>Total FMM Period</td>
<td>9</td>
<td>O</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EMP Feedback Cutoff</td>
<td>10</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Packet Time-Out Value</td>
<td>11</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Power Source Conversion</td>
<td>12</td>
<td>O</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>Values assigned by NMRA</td>
</tr>
<tr>
<td>Analog Mode Function Status</td>
<td>13</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Extended Address</td>
<td>14-16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Reserved by NMRA for future use</td>
</tr>
<tr>
<td>Consist Address</td>
<td>17-18</td>
<td>O</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>Reserved by NMRA for future use</td>
</tr>
<tr>
<td>Consist Addr Active for FL</td>
<td>19</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Reserved by NMRA for future use</td>
</tr>
<tr>
<td>Consist Addr Active for F1-F8</td>
<td>20</td>
<td>O</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Acceleration Adjustment</td>
<td>21</td>
<td>O</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Deceleration Adjustment</td>
<td>22</td>
<td>O</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Speed Table/Mid-range</td>
<td>23</td>
<td>O</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
General Definitions

Binary numerical quantities are stored such that the rightmost bit is the least significant, and the leftmost is the most significant.

Configuration Variable MSB |d07|d06|d05|d04|d03|d02|d01|d00|

Descriptions of Configuration Variables for Multi-Function Decoders

Configuration Variable 1 Primary Address

Bits 0-6 contain an address with a value between 1 and 127. Bit seven must have a value of "0". If the value of Configuration Variable #1 is "00000000" then the decoder will go out of NMRA digital mode and convert to the alternate power source as defined by Configuration Variable #12. This setting will not effect the Digital Decoder's ability to respond to service mode packets (see RP 9.2.3).

Configuration Variable 2 Vstart

Vstart is used to define the voltage drive level used as the start voltage on the motor. The voltage drive levels shall correspond linearly to the voltage applied to the motor at speed step one, as a fraction of available rectified supply voltage. When the voltage drive level is equal to zero, there shall be zero voltage applied to the motor. When it is at maximum "11111111", the full available rectified voltage shall be applied.

Configuration Variable 3 Acceleration Rate

Determines the decoder's acceleration rate. The formula for the acceleration rate shall be equal to (the contents of CV#3*896)/(number of speed steps in use). For example, if the contents of CV#3 =2, then the acceleration is 0.064 sec/step for a decoder currently using 28 speed steps. If the contents of this parameter equals "0" then there is no programmed momentum during acceleration.

Configuration Variable 4 Deceleration Rate

Determines a decoder's braking rate, in the same fashion as acceleration above (CV #3).

Configuration Variable 5 Vhigh

Vhigh is used to specify the motor voltage drive levels at the maximum speed step. This value shall be specified as a fraction of available rectified supply voltage. When the contents of CV#5 equal "11111111", the full available rectified voltage shall be applied. Values of "00000000" or "00000001" shall indicate that Vhigh is not used in the calculation of the speed table.

Configuration Variable 6 Vmid

Vmid specifies the voltage drive level at the middle speed step. Vmid is used to generate a performance curve in the decoder that translate speed step values into motor voltage drive levels and is specified as a fraction of available rectified supply voltage. Values of 00000000 or 00000001 shall indicate that Vmid is not used in the calculation of the speed table.

Configuration Variable 7 Manufacturer Version Number

This is reserved for the manufacturer to store information regarding the version of the decoder.

Configuration Variable 8 Manufacturer ID

CV8 shall contain the NMRA assigned id number of the manufacturer of this decoder. The currently assigned manufacturer ID codes are listed in Appendix A of this Recommended Practice. The use of a value not assigned by the NMRA shall immediately cause the decoder to not be in conformance to this RP. The CV shall be implemented as a read-only value, which cannot be modified.

Configuration Variable 9 Total PWM Period

The value of CV9# sets the nominal PWM period at the decoder output and therefore the frequency is proportional to the reciprocal of the value. The recommend formula for PWM period should be: PWM period (us) = (131 + MANTISSA x 4) x 2 EXP, Where MANTISSA is in bits 0-4 bits of CV#9 (low order) and EXP is bits 5-7 for CV#9. If the...
value programmed into CV-9 falls outside a decoder's capability, it is suggested that the decoder "adjust" the value to the appropriate highest or lowest setting supported by the decoder.

**Configuration Variable 10 EMF Feedback Cutout**

Contains a value between 1 and 128 that indicates the speed step above which the back EMF motor control cuts off. When 14 or 28 speed steps are used the LSB's of the value are truncated appropriately.

**Configuration Variable 11 Packet time-out Value**

Contains the maximum time period that the decoder will maintain its speed without receiving a valid packet addressed to it. See RP 9.2.4 Section C for further information.

**Configuration Variable 12 Power Source Conversion**

Contains the identity of the alternate power source to be converted to should CV #1 contain all zeros. This is also the primary alternative power source selected should the decoder perform power source conversion. The currently assigned Power Source Conversion codes are listed in Appendix B of this Recommended Practice.

**Configuration Variable 13 Analog Mode Function Status**

Indicates the status of each function (F1 through F8) when the unit is operating in analog power mode. A value of "0" indicates the function is off, while a value of "1" indicates the function is on. Bit 0 corresponds to F1, while Bit 7 corresponds to F8.

**Configuration Variables 17,18: Extended Address**

The Extended Address is the locomotives address when the decoder is set up for extended addressing (indicated by a value of "1" in bit location 5 of CV#29). CV#17 contains the most significant bits of the two byte address and must have a value between 11000000 and 11101111, inclusive, in order for this two byte address to be valid. CV 18 contains the least significant bits of the address and may contain any value.

**Configuration Variable 19 Consist Address**

Contains a seven bit address in bit positions 0-6. Bit 7 indicates the relative direction of this unit within a consist, with a value of "0" indicating normal direction, and a value of "1" indicating a direction opposite the unit's normal direction. If the seven bit address in bits 0-6 is "0000000" the unit is not in a consist.

**Configuration Variable 21 Consist Address Active for F1-F8**

Defines for functions F1-F8 whether the function is controlled by the consist address. For each Bit a value of "1" indicates that the function will respond to instructions addressed to the consist address. A value of "0" indicates that the function will only respond to instructions addressed to the locomotive address. F1 is indicated by bit 0. F8 by bit 7.

**Configuration Variable 22 Consist Address Active for FL**

Defines for function FL whether the function is controlled by the consist address. For each Bit a value of "1" indicates that the function will respond to instructions addressed to the consist address. A value of "0" indicates that the function will only respond to instructions addressed to the locomotive address. FL in the forward direction is indicated by bit 0, FL in the reverse direction is controlled by bit 1.

**Configuration Variable 23 Acceleration Adjustment**

This Configuration Variable contains additional acceleration rate information that is to be added to or subtracted from the base value contained in Configuration Variable #3 using the formula (the contents of CV#23*.896)/(number of speed steps in use). This is a 7 bit value (bits 0-6) with bit 7 being reserved for a sign bit (0-add,1-subtract). In case of overflow the maximum acceleration rate shall be used. In case of underflow no acceleration shall be used. The expected use is for changing momentum to simulate differing train lengths/loads, most often when operating in a consist.

**Configuration Variable 24 Deceleration Adjustment**

This Configuration Variable contains additional deceleration rate information that is to be added to or subtracted from the base value contained in Configuration Variable #4 using the formula (the contents of CV#24*.896)/(number of speed steps in use). This is a 7 bit value (bits 0-6) with bit 7 being reserved for a sign bit (0-add,1-subtract). In case of overflow the maximum deceleration rate shall be used. In case of underflow no deceleration shall be used. The expected use is for changing momentum to simulate differing train lengths/loads, most often when operating in a consist.

**Configuration Variable 25 Speed Table/Mid Range Cab Speed Step**

A value between 2 and 127 shall be used to indicate 1 of 126 factory preset speed tables. A value of "00000010" indicates that the curve shall be linear. A value between 128 and 154 defines the cab throttle position (1-26) which will define where the mid range decoder speed value will be applied. In 14 speed mode the decoder will utilize this value divided by two if the value in this variable is outside the range, the default mid cab speed of 14 (for 28 speed mode or 7 for 14 speed mode) shall be used as the mid speed value. Values of "00000000" or "00000001" shall indicate that this CV is not used in the calculation of the speed table.

**Configuration Variable 29 Configurations Supported**

- Bit 0 = Locomotive Direction: "0" = normal, "1" = reversed. This bit controls the locomotive's forward and backward direction in digital mode only. Directional sensitive functions, such as headlights (FL and FR), will also be reversed so that they line up with the locomotive's new forward direction. See RP-9.1.1 for more information.
- Bit 1 = FL Address: "0" = bit 4 in Speed and Direction instructions control FL, "1" = bit 4 in function group one instruction controls FL. See RP-9.2.1 for more information.
- Bit 2 = Power Source Conversion: "0" = NMRA Digital Only, "1" = Power Source Conversion Enabled, See CV#12 for more information.
- Bit 3 = Advanced Decoder Acknowledgment: "0" = advanced acknowledgment disabled, "1" = advanced acknowledgment enabled. See RP-9.2.3 for more information.
- Bit 4 = Speed Table: "0" = speed table set by configuration variables #2-65, and #66, "1" = Speed Table set by configuration variables #66-#95
- Bit 5 = "0" = one byte addressing, "1" = two byte addressing (also known as extended addressing) See RP 9.2.1 for more information.
- Bit 6 = Reserved for future use
- Bit 7 = Accessory Decoder: "0" = Multifunction Decoder, "1" = Accessory Decoder (see CV #541 for a description of assignments for bits 0-6)

*Note If the decoder does not support a feature contained in this table, it shall not allow the bit to be set improperly.

**Configuration Variable 30 ERROR Information**

In the case where the decoder has an error condition this Configuration Variable shall contain the error condition as specified by the manufacturer. A value of "0" indicates no error has occurred.

**Configuration Variables 33-42: Output Locations FL(f), FL(r), and F1-F8**

Contains a matrix indication of which function inputs control which Digital Decoder outputs. This allows the user to control which outputs are controlled by which input commands. The outputs that Function FL(f) controls are indicated in CV #33, FL(r) in CV#34, F1 in CV #35, to F8 in CV#42. A value of "1" in each bit location indicates that that function controls that output. This allows a single function to control multiple outputs, or the same output to be controlled by multiple functions. A value of "00000000" shall indicate that the decoder default output shall be used. CVs 33-36 control outputs 1-8; CVs 37-40 control outputs 9-10; CVs 41-42 control outputs 11-14. The defaults is that FL(f) controls output 1, FL(r) controls output 2, F1 controls output 3 to F8 controls output 10. The lowest numbered output in is the LSB of the CV, as shown in the table below.
Table 1: Output Position vs. CV (a 'd' indicates the default position)

<table>
<thead>
<tr>
<th>CV</th>
<th>Description</th>
<th>msb</th>
<th>lsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Forward Headlight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Reverse Headlight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Function 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Function 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Function 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Function 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Function 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Function 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Function 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Function 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Variable 65 Kick Start
Specifies the amount of extra Kick that will supplied to the motor when transitioning between stop and the first speed step.

Configuration Variable 66: Forward Trim
Specifies a scale factor by which a voltage drive level should be multiplied, when the controller is driving the unit in the forward direction. It is interpreted as n/128. If the Forward Trim configuration variable contains a value of "0" then forward trim is not implemented.

Configuration Variables 67-94: Speed Table
The speed table is defined to be 28 bytes wide, consisting of 28 values for forward speeds. A digital controller that uses this table shall have at least 64 voltage drive levels and can have as many as 256 so that a smooth power curve can be constructed. Note that voltage drive levels are specified in fixed point, in the same way as other parameters. This means that a drive level of 1/4 maximum voltage corresponds to 0100000, not 0010000, as you would expect if the number specified a fraction with a fixed denominator, i.e. value 32 out of a fixed 128 levels (see Definitions section).

Configuration Variable 95: Reverse Trim
Specifies a scale factor by which a voltage drive level should be multiplied, when the controller is driving the unit in reverse. It is interpreted as n/128. If the Reverse Trim configuration variable contains a value of "0" then reverse trim is not implemented.

Configuration Variables 105, 106: User Identification #1 and #2
These CVs are reserved for use by the owner of the decoder to store identification information, e.g. NMRA membership number. CV#105 is ID #1 and CV#106 is ID #2.

Appendix A: Manufacturer ID codes as assigned by the NMRA
The Manufacturer ID codes that have been assigned by the NMRA Technical Department are now in a separate PDF file.
Appendix B: Power Source Conversion codes as assigned by the NMRA

The following Power Source Conversion codes have been assigned by the NMRA Technical Department. Manufacturers wishing to use conversions not on this list shall apply to the NMRA Technical Department for the assignment for a conversion ID.

- 00000001 = Analog Power Conversion
- 00000010 = Radio
- 00000100 = Zero-1
- 00001000 = TRIX
- 00010000 = CTC 16 / Railcommand

Footnotes

- (1) If any of these features are provided, then this CV is Mandatory.
- (2) Allocation of these bits is done by the NMRA on an as needed basis.