It’s been an interesting week. This is the second clinic which was billed as a summary.... But most work online (which is exhausting)
Two main topics: Radio for locomotives (as opposed to throttles and control panels) and some very-large layout work. But before that, do a quick introduction...
Not sure what MMR requires, but it’s at closer to the first one.
Not sure what MMR requires, but it’s at closer to the first one.
Not sure what MMR requires, but it’s at closer to the first one.
Not sure what MMR requires, but it’s at closer to the first one.
From 1954; 2004 ref; FORTRAN. Computers got smaller, but that’s not the only thing that changed. I’m old enough to remember 70’s when it was immensely cool to have a terminal in somebody’s house for playing games. This was a _dumb_ terminal! Commanded at the level of single characters. Note wheel, original pic is a hoax, actually controls for a sub at Smithsonian
From 1954; 2004 ref; FORTRAN. Computers got smaller, but that’s not the only thing that changed. I’m old enough to remember 70’s when it was immensely cool to have a terminal in somebody’s house for playing games. This was a _dumb_ terminal! Commanded at the level of single characters. Note wheel, original pic is a hoax, actually controls for a sub at Smithsonian
From 1954; 2004 ref; FORTRAN. Computers got smaller, but that’s not the only thing that changed. I’m old enough to remember 70’s when it was immensely cool to have a terminal in somebody’s house for playing games. This was a _dumb_ terminal! Commanded at the level of single characters. Note wheel, original pic is a hoax, actually controls for a sub at Smithsonian.
Now the computer is there. But it gets it’s power from the ability to talk to lots of others. That requires protocols, complex but seems simple to user.
Now the computer is there. But it gets it’s power from the ability to talk to lots of others. That requires protocols, complex but seems simple to user.
Same thing is true of communications. We didn’t just perfect POTS, we used the intelligence that’s available. (If Peter Ely here, reference him & call forwarding, tracking, etc) (1970 patent by Amos Joel)
Same thing is true of communications. We didn’t just perfect POTS, we used the intelligence that’s available. (If Peter Ely here, reference him & call forwarding, tracking, etc) (1970 patent by Amos Joel)
Scientists from the RAND Corporation have created this model to illustrate how a "home comp year 2004. However the needed technology will not be economically feasible for the average home. admit that the computer will require not yet invented technology to actually work, but 30 years from expected to solve these problems. With teletype interface and the Fortran language, the computer
Not just commands, protocols. Yes, they take more time, more engineering, but they’re transparent to you.
Part of those protocols is addressing. What if a guest arrives with the wrong number?
Better yet, what if hundreds of guests show up?
Protocols allow communication (though debate today about timing of some of the algorithms for 4000+ nodes). Connections between modular groups.
Need to make this problem go away.
View OpenLCB Unique ID Ranges

'*' means that any values are accepted in that byte, forming the range.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 0 0 0 0 0 | Reserved; convenient value for "No valid node ID assigned"
| 0 * * * * * | Reserved; Leading 0 byte indicates uninitialized or non-standard Node ID
| 1 * * * * * | Reserved for well-known global identifiers
| 1 1 0 0 0 0 | Reserved for well-known EventIDs (see EidAllocations sheet; this is referred to as "OpenLCB vnode" there)
| 1 1 1 * * * | Reserved for CBUS-defined EventIDs (specifically when last two bytes zero); see EidAllocations sheet, where this is referred to as "CBUS vnode"
| 1 99 * * * * | XpressNet translation
| 1 129 * * * * | LocoNet packet transport
| 1 238 * * * * | DCC translation
| 2 * * * * * | Manufacturer-specific assignments
| 2 1 * * * * | Manufacturer space bank 1 (by NMRA Mfg ID byte)
| 2 1 13 * * * | DIY (shared unmanaged space, not recommended for individual use)
| 2 1 18 * * * | JMRI (e.g. for use in software solutions)
| 2 1 235 * * * | MERG
| 2 1 238 * * * | NMRA reserved
| 3 * * * * * | Self-assigning groups space
| 3 0 * * * * | NMRA member number assignments
| 3 4 * * * * | MERG member number assignment
| 3 8 * * * * | CBUS - for mapping existing modules, using the "Layout ID" etc defined by CBUS
| 4 0 0 * * * | Individual UIDs allocated by automated requests
| 5 * * * * * | Specifically assigned ranges
| 5 1 0 0 * * | 8-bit assigned ranges
| 5 1 1 1 1 * | |
| 5 1 1 1 2 * | |
| 5 1 1 1 3 * | |
| 5 2 * * * * | 16-bit assigned ranges
| 5 2 1 2 * * | |
| 5 3 * * * * | 24-bit assigned ranges

Large numbers and delegated allocation.
Large numbers and delegated allocation.
Even works for smaller cases, like growing a club
or even building something on your workbench & then carrying to railroad.